Abstract
For many fungal diseases, macrophages are the major cell population implicated in host protection, primarily by their ability to eliminate the invading fungal pathogen through phagocytosis. In sporotrichosis, this remains true, because of macrophages’ ability to recognize Sporothrix schenckii through specific receptors for some of the fungus’ cellular surface constituents. Further confirmation for macrophages’ pivotal role in fungal diseases came with the identification of toll-like receptors, and the subsequent numerous associations found between TLR-4 deficiency and host susceptibility to diverse fungal pathogens. Involvement of TLR-4 in immune response against sporotrichosis has been conducted to investigate how TLR-4 signaling could affect inflammatory response development through evaluation of H2O2 production and IL-1β, IL-6 and TGF-β release during the course of S. schenckii infection on TLR-4-deficient mice. The results showed that macrophages are largely dependent on TLR-4 for inflammatory activation and that in the absence of TLR-4 signaling, increased TGF-β release may be one of the contributing factors for the abrogated inflammatory activation of peritoneal exudate cells during mice sporotrichosis.




References
Freitas DF, do Valle AC, de Almeida Paes R, Bastos FI, Galhardo MC. Zoonotic Sporotrichosis in Rio de Janeiro, Brazil: a protracted epidemic yet to be curbed. Clin Infect Dis. 2010;50(3):453.
Ramos-e-Silva M, Vasconcelos C, Carneiro S, Cestari T. Sporotrichosis. Clin Dermatol. 2007;25(2):181–7.
Freitas DF, de Siqueira Hoagland B, Do Valle AC, Fraga BB, de Barros MB, de Oliveira Schubach A, de Almeida-Paes R, Cuzzi T, Rosalino CM, Zancopé-Oliveira RM, Gutierrez-Galhardo MC. Sporotrichosis in HIV-infected patients: report of 21 cases of endemic sporotrichosis in Rio de Janeiro, Brazil. Med Mycol. 2011;50(2):170–8.
Rocha MM, Dassin T, Lira R, Lima EL, Severo LC, Londero AT. Sporotrichosis in patient with AIDS: report of a case and review. Rev Iberoam Micol. 2001;18(3):133–6.
Vilela R, Souza GF, Fernandes Cota G, Mendoza L. Cutaneous and meningeal sporotrichosis in a HIV patient. Rev Iberoam Micol. 2007;24(2):161–3.
Galhardo MC, Silva MT, Lima MA, Nunes EP, Schettini LE, de Freitas RF, Paes Rde A, Neves Ede S, do Valle AC. Sporothrix schenckii meningitis in AIDS during immune reconstitution syndrome. J Neurol Neurosurg Psychiatry. 2010;81(6):696–9.
Oda LM, Kubelka CF, Alviano CS, Travassos LR. Ingestion of yeast forms of Sporothrix schenckii by mouse peritoneal macrophages. Infect Immun. 1983;39(2):497–504.
Penha CV, Bezerra LM. Concanavalin A-binding cell wall antigens of Sporothrix schenckii: a serological study. Med Mycol. 2000;38(1):1–7.
Carlos IZ, Sgarbi DB, Santos GC, Placeres MC. Sporothrix schenckii lipid inhibits macrophage phagocytosis: involvement of nitric oxide and tumour necrosis factor-alpha. Scand J Immunol. 2003;57(3):214–20.
Carlos IZ, Sgarbi DB, Angluster J, Alviano CS, Silva CL. Detection of cellular immunity with the soluble antigen of the fungus Sporothrix schenckii in the systemic form of the disease. Mycopathologia. 1992;117(3):139–44.
Carlos IZ, Zini MM, Sgarbi DB, Angluster J, Alviano CS, Silva CL. Disturbances in the production of interleukin-1 and tumor necrosis factor in disseminated murine sporotrichosis. Mycopathologia. 1994;127(3):189–94.
Carlos IZ, Sgarbi DB, Placeres MC. Host organism defense by a peptide-polysaccharide extracted from the fungus Sporothrix schenckii. Mycopathologia. 1998–1999;144(1):9–14.
Maia DC, Sassá MF, Placeres MC, Carlos IZ. Influence of Th1/Th2 cytokines and nitric oxide in murine systemic infection induced by Sporothrix schenckii. Mycopathologia. 2006;161(1):11–9.
Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1(2):135–45.
Veerdonk FL, Kullberg BJ, van der Meer JW, Gow NA, Netea MG. Host-microbe interactions: innate pattern recognition of fungal pathogens. Curr Opin Microbiol. 2008;11(4):305–12.
Roeder A, Kirschning CJ, Rupec RA, Schaller M, Weindl G, Korting HC. Toll-like receptors as key mediators in innate antifungal immunity. Med Mycol. 2004;42(6):485–98.
Levitz SM. Interactions of toll-like receptors with fungi. Microbes Infect. 2004;6(15):1351–5.
Netea MG, Van der Graaf C, Van der Meer JW, Kullberg BJ. Recognition of fungal pathogens by Toll-like receptors. Eur J Clin Microbiol Infect Dis. 2004;23(9):672–6.
Carlos IZ, Sassá MF, da Graça Sgarbi DB, Placeres MC, Maia DC. Current research on the immune response to experimental sporotrichosis. Mycopathologia. 2009;168(1):1–10.
Sassá MF, Saturi AE, Souza LF, Ribeiro LC, Sgarbi DB, Carlos IZ. Response of macrophage toll-like receptor 4 to a Sporothrix schenckii lipid extract during experimental sporotrichosis. Immunology. 2009;128(2):301–9.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.
Pick E, Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immun Methods. 1981;46(2):211–26.
Kumagai Y, Takeuchi O, Akira S. Pathogen recognition by innate receptors. J Infect Chemother. 2008;14(2):86–92.
Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30(1):16–34.
Bonfim CV, Mamoni RL, Blotta MH. TLR-2, TLR-4 and dectin-1 expression in human monocytes and neutrophils stimulated by Paracoccidioides brasiliensis. Med Mycol. 2009;47(7):722–33.
Loures FV, Pina A, Felonato M, Araújo EF, Leite KR, Calich VL. Toll-like receptor 4 signaling leads to severe fungal infection associated with enhanced proinflammatory immunity and impaired expansion of regulatory T cells. Infect Immun. 2010;78(3):1078–88.
Weindl G, Naglik JR, Kaesler S, Biedermann T, Hube B, Korting HC, Schaller M. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J Clin Invest. 2007;117(12):3664–72.
Netea MG, Gow NA, Joosten LA, Verschueren I, van der Meer JW, Kullberg BJ. Variable recognition of Candida albicans strains by TLR4 and lectin recognition receptors. Med Mycol. 2010;48(7):897–903.
Pamer EG. TLR polymorphisms and the risk of invasive fungal infections. N Engl J Med. 2008;359(17):1836–8.
Carvalho A, Pasqualotto AC, Pitzurra L, Romani L, Denning DW, Rodrigues F. Polymorphisms in toll-like receptor genes and susceptibility to pulmonary aspergillosis. J Infect Dis. 2008;197(4):618–21.
Ding K, Shibui A, Wang Y, Takamoto M, Matsuguchi T, Sugane K. Impaired recognition by Toll-like receptor 4 is responsible for exacerbated murine Pneumocystis pneumonia. Microbes Infect. 2005;7(2):195–203.
Yauch LE, Mansour MK, Shoham S, Rottman JB, Levitz SM. Involvement of CD14, toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect Immun. 2004;72(9):5373–82.
Nakamura K, Miyagi K, Koguchi Y, Kinjo Y, Uezu K, Kinjo T, Akamine M, Fujita J, Kawamura I, Mitsuyama M, Adachi Y, Ohno N, Takeda K, Akira S, Miyazato A, Kaku M, Kawakami K. Limited contribution of Toll-like receptor 2 and 4 to the host response to a fungal infectious pathogen. Cryptococcus neoformans. FEMS Immunol Med Microbiol. 2006;47(1):148–54.
Gregory CD, Pound JD. Microenvironmental influences of apoptosis in vivo and in vitro. Apoptosis. 2010;15(9):1029–49.
Miyake K. Roles for accessory molecules in microbial recognition by Toll-like receptors. J Endotoxin Res. 2006;12(4):195–204.
Miyake K. Innate immune sensing of pathogens and danger signals by cell surface toll-like receptors. Semin Immunol. 2007;19(1):3–10.
Lopes-Bezerra LM, Schubach A, Costa RO. Sporothrix schenckii and sporotrichosis. An Acad Bras Cienc. 2006;78(2):293–308.
Acknowledgments
The authors are grateful to Marisa Campos Polesi Placeres for technical support. This work was supported by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sassá, M.F., Ferreira, L.S., de Abreu Ribeiro, L.C. et al. Immune Response Against Sporothrix schenckii in TLR-4-Deficient Mice. Mycopathologia 174, 21–30 (2012). https://doi.org/10.1007/s11046-012-9523-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11046-012-9523-1