Skip to main content

Advertisement

Log in

Capsular Material of Cryptococcus neoformans: Virulence and Much More

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The capsule is generally considered one of the more powerful virulence factors of microorganisms, driving research in the field of microbial pathogenesis and in the development of vaccines. Cryptococcus neoformans is unique among the most common human fungal pathogens in that it possesses a complex polysaccharide capsule. This review focuses on the Cryptococcus neoformans capsule from the viewpoint of fungal pathogenesis, and the effective immune response target of the capsule’s main component, glucuronoxylomannan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pagano L, Fianchi L, Leone G. Fungal pneumonia due to molds in patients with hematological malignancies. J Chemother. 2006;18:339–52.

    PubMed  CAS  Google Scholar 

  2. Tsuchida H, Ichikawa D, Shima Y, Yasuda T, Sato T, Kimura K. A case of cryptococcal meningitis with nephrotic syndrome and renal insufficiency under immunosuppressive therapy. Nippon Jinzo Gakkai Shi. 2007;49:54–9.

    PubMed  Google Scholar 

  3. Moosbrugger EA, Adams BB, Kralovic SM. Cutaneous cryptococcosis in a patient on corticosteroid therapy for rheumatoid arthritis. Int J Dermatol. 2008;47:630–2.

    Article  PubMed  Google Scholar 

  4. Qazzafi Z, Thiruchunapalli D, Birkenhead D, Bell D, Sandoe JA. Invasive Cryptococcus neoformans infection in an asplenic patient. J Infect. 2007;55:566–8.

    Article  PubMed  CAS  Google Scholar 

  5. Singh N, Husain S, De Vera M, Gayowski T, Cacciarelli TV. Cryptococcus neoformans infection in patients with cirrhosis, including liver transplant candidates. Medicine (Baltimore). 2004;83:188–92.

    Article  Google Scholar 

  6. Capoor MR, Khanna G, Malhotra R, Verma S, Nair D, Deb M, Aggarwal P. Disseminated cryptococcosis with necrotizing fasciitis in an apparently immunocompetent host: a case report. Med Mycol. 2008;46:269–73.

    Article  PubMed  Google Scholar 

  7. Nakamura S, Izumikawa K, Seki M, Kakeya H, Yamamoto Y, Yanagihara K, Miyazaki Y, Kohno S. Pulmonary cryptococcosis in late pregnancy and review of published literature. Mycopathologia. 2009;167:125–31.

    Article  PubMed  Google Scholar 

  8. Annapureddy SR, Masterson SW, David HG, Greig JR. Post partum osteomyelitis due to Cryptococcus neoformans. Scand J Infect Dis. 2007;39:354–6.

    Article  PubMed  Google Scholar 

  9. Swe Han KS, Bekker A, Greeff S, Perkins DR. Cryptococcus meningitis and skin lesions in an HIV negative child. J Clin Pathol. 2008;61:1138–9.

    Article  PubMed  Google Scholar 

  10. Gologorsky Y, DeLaMora P, Souweidane MM, Greenfield JP. Cerebellar cryptococcoma in an immunocompetent child. Case report. J Neurosurg. 2007;107:314–7.

    PubMed  Google Scholar 

  11. Song JC, Kim SK, Kim ES, Jung IS, Song YG, Yu JS, Park HJ. A case of colonic cryptococcosis. Korean J Gastroenterol. 2008;52:255–60.

    PubMed  Google Scholar 

  12. Nara S, Sano T, Ojima H, Onaya H, Ikeda M, Morizane C, Esaki M, Sakamoto Y, Shimada K, Kosuge T. Liver cryptococcosis manifesting as obstructive jaundice in a young immunocompetent man: report of a case. Surg Today. 2008;38:271–4.

    Article  PubMed  Google Scholar 

  13. Van Grieken SA, Dupont LJ, Van Raemdonck DE, Van Bleyenbergh P, Verleden GM. Primary cryptococcal cellulitis in a lung transplant recipient. J Heart Lung Transplant. 2007;26:285–9.

    Article  PubMed  Google Scholar 

  14. Durden FM, Elewski B. Cutaneous involvement with Cryptococcus neoformans in AIDS. J Am Acad Dermatol. 1994;30:844–8.

    Article  PubMed  CAS  Google Scholar 

  15. Sobel JD, Vazquez JA. Fungal infections of the urinary tract. World J Urol. 1999;17:410–4.

    Article  PubMed  CAS  Google Scholar 

  16. Seaton RA, Verma N, Naraqi S, Wembri JP, Warrell DA. Visual loss in immunocompetent patients with Cryptococcus neoformans var. gattii meningitis. Trans R Soc Trop Med Hyg. 1997;91:44–9.

    Article  PubMed  CAS  Google Scholar 

  17. Cuellar ML, Silveira LH, Espinoza LR. Fungal arthritis. Ann Rheum Dis. 1992;51:690–7.

    Article  PubMed  CAS  Google Scholar 

  18. McFadden DC, De Jesus M, Casadevall A. The physical properties of the capsular polysaccharides from Cryptococcus neoformans suggest features for capsule construction. J Biol Chem. 2006;281:1868–75.

    Article  PubMed  CAS  Google Scholar 

  19. Zaragoza O, Rodrigues ML, De Jesus M, Frases S, Dadachova E, Casadevall A. The capsule of the fungal pathogen Cryptococcus neoformans. Adv Appl Microbiol. 2009;68:133–216.

    Article  PubMed  CAS  Google Scholar 

  20. Kwon-Chung KJ, Varma A. Do major species concepts support one, two or more species within Cryptococcus neoformans? FEMS Yeast Res. 2006;6:574–87.

    Article  PubMed  CAS  Google Scholar 

  21. Alspaugh JA, Pukkila-Worley R, Harashima T, Cavallo LM, Funnell D, Cox GM, Perfect JR, Kronstad JW, Heitman J. Adenylyl cyclase functions downstream of the Galpha protein Gpa1 and controls mating and pathogenicity of Cryptococcus neoformans. Eukaryot Cell. 2002;1:75–84.

    Article  PubMed  CAS  Google Scholar 

  22. Chrisman CJ, Albuquerque P, Guimaraes AJ, Nieves E, Casadevall A. Phospholipids trigger Cryptococcus neoformans capsular enlargement during interactions with amoebae and macrophages. PLoS Pathog. 2011;7:e1002047.

    Article  PubMed  CAS  Google Scholar 

  23. Zaragoza O, Garcia-Rodas R, Nosanchuk JD, Cuenca-Estrella M, Rodriguez-Tudela JL, Casadevall A. Fungal cell gigantism during mammalian infection. PLoS Pathog. 2010;6. doi: 10.1371/annotation/0675044c-d80f-456f-bb63-4f85fb1d0c33.

  24. Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chretien F, Heitman J, Dromer F, Nielsen K. Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog. 2010;6. doi: 10.1371/annotation/1b59fd9e-9ac9-4ea8-a083-14c413c80b03.

  25. Zaragoza O, Chrisman CJ, Castelli MV, Frases S, Cuenca-Estrella M, Rodriguez-Tudela JL, Casadevall A. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell Microbiol. 2008;10:2043–57.

    Article  PubMed  CAS  Google Scholar 

  26. Chrisman CJ, Alvarez M, Casadevall A. Phagocytosis of Cryptococcus neoformans by, and nonlytic exocytosis from, Acanthamoeba castellanii. Appl Environ Microbiol. 2010;76:6056–62.

    Article  PubMed  CAS  Google Scholar 

  27. Grinsell M, Weinhold LC, Cutler JE, Han Y, Kozel TR. In vivo clearance of glucuronoxylomannan, the major capsular polysaccharide of Cryptococcus neoformans: a critical role for tissue macrophages. J Infect Dis. 2001;184:479–87.

    Article  PubMed  CAS  Google Scholar 

  28. Yauch LE, Mansour MK, Levitz SM. Receptor-mediated clearance of Cryptococcus neoformans capsular polysaccharide in vivo. Infect Immun. 2005;73:8429–32.

    Article  PubMed  CAS  Google Scholar 

  29. Eng RH, Bishburg E, Smith SM, Kapila R. Cryptococcal infections in patients with acquired immune deficiency syndrome. Am J Med. 1986;81:19–23.

    Article  PubMed  CAS  Google Scholar 

  30. Reiss E, Cherniak R, Eby R, Kaufman L. Enzyme immunoassay detection of IgM to galactoxylomannan of Cryptococcus neoformans. Diagn Immunol. 1984;2:109–15.

    PubMed  CAS  Google Scholar 

  31. Cherniak R, Sundstrom JB. Polysaccharide antigens of the capsule of Cryptococcus neoformans. Infect Immun. 1994;62:1507–12.

    PubMed  CAS  Google Scholar 

  32. McFadden DC, Fries BC, Wang F, Casadevall A. Capsule structural heterogeneity and antigenic variation in Cryptococcus neoformans. Eukaryot Cell. 2007;6:1464–73.

    Article  PubMed  CAS  Google Scholar 

  33. Cherniak R, Valafar H, Morris LC, Valafar F. Cryptococcus neoformans chemotyping by quantitative analysis of 1H nuclear magnetic resonance spectra of glucuronoxylomannans with a computer-simulated artificial neural network. Clin Diagn Lab Immunol. 1998;5:146–59.

    PubMed  CAS  Google Scholar 

  34. Bacon BE, Cherniak R, Kwon-Chung KJ, Jacobson ES. Structure of the O-deacetylated glucuronoxylomannan from Cryptococcus neoformans Cap70 as determined by 2D NMR spectroscopy. Carbohydr Res. 1996;283:95–110.

    Article  PubMed  CAS  Google Scholar 

  35. Nimrichter L, Frases S, Cinelli LP, Viana NB, Nakouzi A, Travassos LR, Casadevall A, Rodrigues ML. Self-aggregation of Cryptococcus neoformans capsular glucuronoxylomannan is dependent on divalent cations. Eukaryot Cell. 2007;6:1400–10.

    Article  PubMed  CAS  Google Scholar 

  36. Jesus MD, Nicola AM, Chow SK, Lee IR, Nong S, Specht CA, Levitz SM, Casadevall A. Glucuronoxylomannan, galactoxylomannan, and mannoprotein occupy spatially separate and discrete regions in the capsule of Cryptococcus neoformans. Virulence. 2010;1:500–8.

    Article  PubMed  Google Scholar 

  37. Cordero RJ, Frases S, Guimaraes AJ, Rivera J, Casadevall A. Evidence for branching in cryptococcal capsular polysaccharides and consequences on its biological activity. Mol Microbiol. 2011;79(4):1101–17.

    Article  PubMed  CAS  Google Scholar 

  38. Mond JJ, Lees A, Snapper CM. T cell-independent antigens type 2. Annu Rev Immunol. 1995;13:655–92.

    Article  PubMed  CAS  Google Scholar 

  39. Fromtling RA, Shadomy HJ, Jacobson ES. Decreased virulence in stable, acapsular mutants of Cryptococcus neoformans. Mycopathologia. 1982;79:23–9.

    Article  PubMed  CAS  Google Scholar 

  40. Chang YC, Kwon-Chung KJ. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol. 1994;14:4912–9.

    PubMed  CAS  Google Scholar 

  41. Coenjaerts FE, Hoepelman AI, Scharringa J, Aarts M, Ellerbroek PM, Bevaart L, Van Strijp JA, Janbon G. The Skn7 response regulator of Cryptococcus neoformans is involved in oxidative stress signalling and augments intracellular survival in endothelium. FEMS Yeast Res. 2006;6:652–61.

    Article  PubMed  CAS  Google Scholar 

  42. Chretien F, Lortholary O, Kansau I, Neuville S, Gray F, Dromer F. Pathogenesis of cerebral Cryptococcus neoformans infection after fungemia. J Infect Dis. 2002;186:522–30.

    Article  PubMed  Google Scholar 

  43. Feldmesser M, Kress Y, Novikoff P, Casadevall A. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect Immun. 2000;68:4225–37.

    Article  PubMed  CAS  Google Scholar 

  44. Lee SC, Kress Y, Zhao ML, Dickson DW, Casadevall A. Cryptococcus neoformans survive and replicate in human microglia. Lab Invest. 1995;73:871–9.

    PubMed  CAS  Google Scholar 

  45. Tucker SC, Casadevall A. Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc Natl Acad Sci USA. 2002;99:3165–70.

    Article  PubMed  CAS  Google Scholar 

  46. Naslund PK, Miller WC, Granger DL. Cryptococcus neoformans fails to induce nitric oxide synthase in primed murine macrophage-like cells. Infect Immun. 1995;63:1298–304.

    PubMed  CAS  Google Scholar 

  47. Moranta D, Regueiro V, March C, Llobet E, Margareto J, Larrarte E, Garmendia J, Bengoechea JA. Klebsiella pneumoniae capsule polysaccharide impedes the expression of beta-defensins by airway epithelial cells. Infect Immun. 2010;78:1135–46.

    Article  PubMed  CAS  Google Scholar 

  48. Campos MA, Vargas MA, Regueiro V, Llompart CM, Alberti S, Bengoechea JA. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun. 2004;72:7107–14.

    Article  PubMed  CAS  Google Scholar 

  49. Alvarez M, Casadevall A. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr Biol. 2006;16:2161–5.

    Article  PubMed  CAS  Google Scholar 

  50. Alvarez M, Casadevall A. Cell-to-cell spread and massive vacuole formation after Cryptococcus neoformans infection of murine macrophages. BMC Immunol. 2007;8:16.

    Article  PubMed  CAS  Google Scholar 

  51. Wilder JA, Olson GK, Chang YC, Kwon-Chung KJ, Lipscomb MF. Complementation of a capsule deficient Cryptococcus neoformans with CAP64 restores virulence in a murine lung infection. Am J Respir Cell Mol Biol. 2002;26:306–14.

    PubMed  CAS  Google Scholar 

  52. Charlier C, Chretien F, Baudrimont M, Mordelet E, Lortholary O, Dromer F. Capsule structure changes associated with Cryptococcus neoformans crossing of the blood-brain barrier. Am J Pathol. 2005;166:421–32.

    Article  PubMed  CAS  Google Scholar 

  53. Merkel GJ, Cunningham RK. The interaction of Cryptococcus neoformans with primary rat lung cell cultures. J Med Vet Mycol. 1992;30:115–21.

    Article  PubMed  CAS  Google Scholar 

  54. Barbosa FM, Fonseca FL, Figueiredo RT, Bozza MT, Casadevall A, Nimrichter L, Rodrigues ML. Binding of glucuronoxylomannan to the CD14 receptor in human A549 alveolar cells induces interleukin-8 production. Clin Vaccine Immunol. 2007;14:94–8.

    Article  PubMed  CAS  Google Scholar 

  55. Barbosa FM, Fonseca FL, Holandino C, Alviano CS, Nimrichter L, Rodrigues ML. Glucuronoxylomannan-mediated interaction of Cryptococcus neoformans with human alveolar cells results in fungal internalization and host cell damage. Microbes Infect. 2006;8:493–502.

    Article  PubMed  CAS  Google Scholar 

  56. Chen SH, Stins MF, Huang SH, Chen YH, Kwon-Chung KJ, Chang Y, Kim KS, Suzuki K, Jong AY. Cryptococcus neoformans induces alterations in the cytoskeleton of human brain microvascular endothelial cells. J Med Microbiol. 2003;52:961–70.

    Article  PubMed  CAS  Google Scholar 

  57. Chang YC, Jong A, Huang S, Zerfas P, Kwon-Chung KJ. CPS1, a homolog of the Streptococcus pneumoniae type 3 polysaccharide synthase gene, is important for the pathobiology of Cryptococcus neoformans. Infect Immun. 2006;74:3930–8.

    Article  PubMed  CAS  Google Scholar 

  58. Huang SH, Long M, Wu CH, Kwon-Chung KJ, Chang YC, Chi F, Lee S, Jong A. Invasion of Cryptococcus neoformans into human brain microvascular endothelial cells is mediated through the lipid rafts-endocytic pathway via the dual specificity tyrosine-phosphorylation-regulated kinase 3 (DYRK3). J Biol Chem. 2011. doi:10.1074/jbc.M111.219378.

  59. Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun. 2009;77:120–7.

    Article  PubMed  CAS  Google Scholar 

  60. Monari C, Bistoni F, Vecchiarelli A. Glucuronoxylomannan exhibits potent immunosuppressive properties. FEMS Yeast Res. 2006;6:537–42.

    Article  PubMed  CAS  Google Scholar 

  61. Vecchiarelli A. Immunoregulation by capsular components of Cryptococcus neoformans. Med Mycol. 2000;38:407–17.

    PubMed  CAS  Google Scholar 

  62. Vecchiarelli A, Retini C, Pietrella D, Monari C, Tascini C, Beccari T, Kozel TR. Downregulation by cryptococcal polysaccharide of tumor necrosis factor alpha and interleukin-1 beta secretion from human monocytes. Infect Immun. 1995;63:2919–23.

    PubMed  CAS  Google Scholar 

  63. Walenkamp AM, Chaka WS, Verheul AF, Vaishnav VV, Cherniak R, Coenjaerts FE, Hoepelman IM. Cryptococcus neoformans and its cell wall components induce similar cytokine profiles in human peripheral blood mononuclear cells despite differences in structure. FEMS Immunol Med Microbiol. 1999;26:309–18.

    Article  PubMed  CAS  Google Scholar 

  64. Vecchiarelli A, Retini C, Monari C, Tascini C, Bistoni F, Kozel TR. Purified capsular polysaccharide of Cryptococcus neoformans induces interleukin-10 secretion by human monocytes. Infect Immun. 1996;64:2846–9.

    PubMed  CAS  Google Scholar 

  65. Collins HL, Bancroft GJ. Encapsulation of Cryptococcus neoformans impairs antigen-specific T-cell responses. Infect Immun. 1991;59:3883–8.

    PubMed  CAS  Google Scholar 

  66. Retini C, Vecchiarelli A, Monari C, Bistoni F, Kozel TR. Encapsulation of Cryptococcus neoformans with glucuronoxylomannan inhibits the antigen-presenting capacity of monocytes. Infect Immun. 1998;66:664–9.

    PubMed  CAS  Google Scholar 

  67. Syme RM, Spurrell JC, Amankwah EK, Green FH, Mody CH. Primary dendritic cells phagocytose Cryptococcus neoformans via mannose receptors and Fcgamma receptor II for presentation to T lymphocytes. Infect Immun. 2002;70:5972–81.

    Article  PubMed  CAS  Google Scholar 

  68. Vecchiarelli A, Pietrella D, Lupo P, Bistoni F, McFadden DC, Casadevall A. The polysaccharide capsule of Cryptococcus neoformans interferes with human dendritic cell maturation and activation. J Leukoc Biol. 2003;74:370–8.

    Article  PubMed  CAS  Google Scholar 

  69. Pietrella D, Perito S, Bistoni F, Vecchiarelli A. Cytotoxic T lymphocyte antigen costimulation influences T-cell activation in response to Cryptococcus neoformans. Infect Immun. 2001;69:1508–14.

    Article  PubMed  CAS  Google Scholar 

  70. Almeida GM, Andrade RM, Bento CA. The capsular polysaccharides of Cryptococcus neoformans activate normal CD4(+) T cells in a dominant Th2 pattern. J Immunol. 2001;167:5845–51.

    PubMed  CAS  Google Scholar 

  71. Retini C, Vecchiarelli A, Monari C, Tascini C, Bistoni F, Kozel TR. Capsular polysaccharide of Cryptococcus neoformans induces proinflammatory cytokine release by human neutrophils. Infect Immun. 1996;64:2897–903.

    PubMed  CAS  Google Scholar 

  72. Vecchiarelli A, Retini C, Casadevall A, Monari C, Pietrella D, Kozel TR. Involvement of C3a and C5a in interleukin-8 secretion by human polymorphonuclear cells in response to capsular material of Cryptococcus neoformans. Infect Immun. 1998;66:4324–30.

    PubMed  CAS  Google Scholar 

  73. Monari C, Kozel TR, Bistoni F, Vecchiarelli A. Modulation of C5aR expression on human neutrophils by encapsulated and acapsular Cryptococcus neoformans. Infect Immun. 2002;70:3363–70.

    Article  PubMed  CAS  Google Scholar 

  74. Farmer SG, Komorowski RA. Histologic response to capsule-deficient Cryptococcus neoformans. Arch Pathol. 1973;96:383–7.

    PubMed  CAS  Google Scholar 

  75. Kwon-Chung KJ, Rhodes JC. Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun. 1986;51:218–23.

    PubMed  CAS  Google Scholar 

  76. Dong ZM, Murphy JW. Intravascular cryptococcal culture filtrate (CneF) and its major component, glucuronoxylomannan, are potent inhibitors of leukocyte accumulation. Infect Immun. 1995;63:770–8.

    PubMed  CAS  Google Scholar 

  77. Lipovsky MM, Gekker G, Hu S, Ehrlich LC, Hoepelman AI, Peterson PK. Cryptococcal glucuronoxylomannan induces interleukin (IL)-8 production by human microglia but inhibits neutrophil migration toward IL-8. J Infect Dis. 1998;177:260–3.

    Article  PubMed  CAS  Google Scholar 

  78. Coenjaerts FE, Walenkamp AM, Mwinzi PN, Scharringa J, Dekker HA, van Strijp JA, Cherniak R, Hoepelman AI. Potent inhibition of neutrophil migration by cryptococcal mannoprotein-4-induced desensitization. J Immunol. 2001;167:3988–95.

    PubMed  CAS  Google Scholar 

  79. Dong ZM, Murphy JW. Cryptococcal polysaccharides induce l-selectin shedding and tumor necrosis factor receptor loss from the surface of human neutrophils. J Clin Invest. 1996;97:689–98.

    Article  PubMed  CAS  Google Scholar 

  80. Dong ZM, Murphy JW. Cryptococcal polysaccharides bind to CD18 on human neutrophils. Infect Immun. 1997;65:557–63.

    PubMed  CAS  Google Scholar 

  81. Dong ZM, Jackson L, Murphy JW. Mechanisms for induction of l-selectin loss from T lymphocytes by a cryptococcal polysaccharide, glucuronoxylomannan. Infect Immun. 1999;67:220–9.

    PubMed  CAS  Google Scholar 

  82. Ellerbroek PM, Hoepelman AI, Wolbers F, Zwaginga JJ, Coenjaerts FE. Cryptococcal glucuronoxylomannan inhibits adhesion of neutrophils to stimulated endothelium in vitro by affecting both neutrophils and endothelial cells. Infect Immun. 2002;70:4762–71.

    Article  PubMed  CAS  Google Scholar 

  83. Smelcerovic A, Knezevic-Jugovic Z, Petronijevic Z. Microbial polysaccharides and their derivatives as current and prospective pharmaceuticals. Curr Pharm Des. 2008;14:3168–95.

    Article  PubMed  CAS  Google Scholar 

  84. Tzianabos AO. Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev. 2000;13:523–33.

    Article  PubMed  CAS  Google Scholar 

  85. Shoham S, Huang C, Chen JM, Golenbock DT, Levitz SM. Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J Immunol. 2001;166:4620–6.

    PubMed  CAS  Google Scholar 

  86. Monari C, Retini C, Casadevall A, Netski D, Bistoni F, Kozel TR, Vecchiarelli A. Differences in outcome of the interaction between Cryptococcus neoformans glucuronoxylomannan and human monocytes and neutrophils. Eur J Immunol. 2003;33:1041–51.

    Article  PubMed  CAS  Google Scholar 

  87. Monari C, Bistoni F, Casadevall A, Pericolini E, Pietrella D, Kozel TR, Vecchiarelli A. Glucuronoxylomannan, a microbial compound, regulates expression of costimulatory molecules and production of cytokines in macrophages. J Infect Dis. 2005;191:127–37.

    Article  PubMed  CAS  Google Scholar 

  88. Monari C, Kozel TR, Paganelli F, Pericolini E, Perito S, Bistoni F, Casadevall A, Vecchiarelli A. Microbial immune suppression mediated by direct engagement of inhibitory Fc receptor. J Immunol. 2006;177:6842–51.

    PubMed  CAS  Google Scholar 

  89. Retini C, Kozel TR, Pietrella D, Monari C, Bistoni F, Vecchiarelli A. Interdependency of interleukin-10 and interleukin-12 in regulation of T-cell differentiation and effector function of monocytes in response to stimulation with Cryptococcus neoformans. Infect Immun. 2001;69:6064–73.

    Article  PubMed  CAS  Google Scholar 

  90. Monari C, Pericolini E, Bistoni G, Casadevall A, Kozel TR, Vecchiarelli A. Cryptococcus neoformans capsular glucuronoxylomannan induces expression of fas ligand in macrophages. J Immunol. 2005;174:3461–8.

    PubMed  CAS  Google Scholar 

  91. Villena SN, Pinheiro RO, Pinheiro CS, Nunes MP, Takiya CM, DosReis GA, Previato JO, Mendonca-Previato L, Freire-de-Lima CG. Capsular polysaccharides galactoxylomannan and glucuronoxylomannan from Cryptococcus neoformans induce macrophage apoptosis mediated by Fas ligand. Cell Microbiol. 2008;10:1274–85.

    Article  PubMed  CAS  Google Scholar 

  92. Trinchieri G, Pflanz S, Kastelein RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity. 2003;19:641–4.

    Article  PubMed  CAS  Google Scholar 

  93. Monari C, Bevilacqua S, Piccioni M, Pericolini E, Perito S, Calvitti M, Bistoni F, Kozel TR, Vecchiarelli A. A microbial polysaccharide reduces the severity of rheumatoid arthritis by influencing Th17 differentiation and proinflammatory cytokines production. J Immunol. 2009;183:191–200.

    Article  PubMed  CAS  Google Scholar 

  94. Vecchiarelli A, Monari C. Microbial polysaccharide: new insights for treating autoimmune diseases. Front Biosci (Schol Ed). 2009;2:256–67.

    Google Scholar 

  95. Monari C, Paganelli F, Bistoni F, Kozel TR, Vecchiarelli A. Capsular polysaccharide induction of apoptosis by intrinsic and extrinsic mechanisms. Cell Microbiol. 2008;10:2129–37.

    Article  PubMed  CAS  Google Scholar 

  96. Chiapello LS, Baronetti JL, Garro AP, Spesso MF, Masih DT. Cryptococcus neoformans glucuronoxylomannan induces macrophage apoptosis mediated by nitric oxide in a caspase-independent pathway. Int Immunol. 2008;20:1527–41.

    Article  PubMed  CAS  Google Scholar 

  97. Ravetch JV, Lanier LL. Immune inhibitory receptors. Science. 2000;290:84–9.

    Article  PubMed  CAS  Google Scholar 

  98. Bruhns P, Vely F, Malbec O, Fridman WH, Vivier E, Daeron M. Molecular basis of the recruitment of the SH2 domain-containing inositol 5-phosphatases SHIP1 and SHIP2 by fcgamma RIIB. J Biol Chem. 2000;275:37357–64.

    Article  PubMed  CAS  Google Scholar 

  99. Piccioni M, Monari C, Bevilacqua S, Perito S, Bistoni F, Kozel TR, Vecchiarelli A. A critical role for FcgammaRIIB in up-regulation of Fas ligand induced by a microbial polysaccharide. Clin Exp Immunol. 2011;165:190–201.

    Article  PubMed  CAS  Google Scholar 

  100. Yauch LE, Lam JS, Levitz SM. Direct inhibition of T-cell responses by the Cryptococcus capsular polysaccharide glucuronoxylomannan. PLoS Pathog.2006. doi:10.1371/journal.ppat.0020120.

  101. Green DR. Overview: apoptotic signaling pathways in the immune system. Immunol Rev. 2003;193:5–9.

    Article  PubMed  CAS  Google Scholar 

  102. Krammer PH. CD95’s deadly mission in the immune system. Nature. 2000;407:789–95.

    Article  PubMed  CAS  Google Scholar 

  103. Chiapello LS, Aoki MP, Rubinstein HR, Masih DT. Apoptosis induction by glucuronoxylomannan of Cryptococcus neoformans. Med Mycol. 2003;41:347–53.

    Article  PubMed  CAS  Google Scholar 

  104. Chiapello LS, Baronetti JL, Aoki MP, Gea S, Rubinstein H, Masih DT. Immunosuppression, interleukin-10 synthesis and apoptosis are induced in rats inoculated with Cryptococcus neoformans glucuronoxylomannan. Immunology. 2004;113:392–400.

    Article  PubMed  CAS  Google Scholar 

  105. Liu T, Chen X, Feng BS, He SH, Zhang TY, Wang BQ, Yang PC. Glucuronoxylomannan promotes the generation of antigen-specific T regulatory cell that suppresses the antigen specific Th2 response upon activation. J Cell Mol Med. 2008;13(8B):1765–74.

    Article  Google Scholar 

  106. Chiapello L, Iribarren P, Cervi L, Rubinstein H, Masih DT. Mechanisms for induction of immunosuppression during experimental cryptococcosis: role of glucuronoxylomannan. Clin Immunol. 2001;100(1):96–106.

    Article  PubMed  CAS  Google Scholar 

  107. Mariano Andrade R, Monteiro Almeida G, Alexandre DosReis G, Alves Melo Bento C. Glucuronoxylomannan of Cryptococcus neoformans exacerbates in vitro yeast cell growth by interleukin 10-dependent inhibition of CD4+ T lymphocyte responses. Cell Immunol. 2003;222(2):116–25.

    Article  PubMed  CAS  Google Scholar 

  108. Tissi L, Puliti M, Bistoni F, Mosci P, Kozel TR, Vecchiarelli A. Glucuronoxylomannan, the major capsular polysaccharide of Cryptococcus neoformans, inhibits the progression of group B streptococcal arthritis. Infect Immun. 2004;72(11):6367–72.

    Article  PubMed  CAS  Google Scholar 

  109. Retini C, Casadevall A, Pietrella D, Monari C, Palazzetti B, Vecchiarelli A. Specific activated T cells regulate IL-12 production by human monocytes stimulated with Cryptococcus neoformans. J Immunol. 1999;162(3):1618–23.

    PubMed  CAS  Google Scholar 

  110. Blackstock R, Casadevall A. Presentation of cryptococcal capsular polysaccharide (GXM) on activated antigen-presenting cells inhibits the T-suppressor response and enhances delayed-type hypersensitivity and survival. Immunology. 1997;92(3):334–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the European Commission, FINSysB Marie Curie Initial Training 16 Network: PITN-GA-2008-214004, and the Fondazione Cassa di Risparmio di Perugia: 2010.011.0398. We thank Thomas Kozel, from the School of Medicine of the University of Nevada, USA, for supplying us with GXM. We thank Catherine Macpherson for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vecchiarelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vecchiarelli, A., Monari, C. Capsular Material of Cryptococcus neoformans: Virulence and Much More. Mycopathologia 173, 375–386 (2012). https://doi.org/10.1007/s11046-011-9513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-011-9513-8

Keywords

Navigation