Skip to main content
Log in

Melanization of a Meristematic Mutant of Fonsecaea monophora Increases Tolerance to Stress Factors While no Effects on Antifungal Susceptibility

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Melanin is a complex polymer, which is widely distributed in nature, and is known as an important virulence factor in opportunistic and pathogenic fungi. In this study, three melanin mutants of Fonsecaea monophora from a case of chromoblastomycosis were generated from a parent strain that lacked hyphal morphology but was meristematic instead. Two albino mutants, one of which (CBS 125187) produced secreted melanin and another (CBS 125149) lacked melanin, grew faster than a mutant with cell-wall-associated and secreted melanin (CBS 125188) and than the meristematic parent strain (CBS 122845) (P < 0.05). The albino strains were also more sensitive to low pH, high UV radiation, and oxidative stress (P < 0.05). However, susceptibility testing against eight antifungal agents showed no statistical difference (P > 0.05). The discovery of three melanin mutants of a single meristematic mutant provided an alternative way to study the role of cell-wall-associated and secreted melanins in the pathogenesis of black fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nosanchuk JD, Casadevall A. The contribution of melanin to microbial pathogenesis. Cell Microbiol. 2003;5(4):203–23.

    Article  PubMed  CAS  Google Scholar 

  2. Morris-Jones R, Gomez BL, Diez S, Uran M, Morris-Jones SD, Casadevall A, et al. Synthesis of melanin pigment by Candida albicans in vitro and during infection. Infect Immun. 2005;73(9):6147–50. doi:10.1128/IAI.73.9.6147-6150.2005.

    Article  PubMed  CAS  Google Scholar 

  3. Chaskes S, Tyndall RL. Pigment production by Cryptococcus neoformans and other Cryptococcus species from aminophenols and diaminobenzenes. J Clin Microbiol. 1978;7(2):146–52.

    PubMed  CAS  Google Scholar 

  4. Gomez BL, Nosanchuk JD, Diez S, Youngchim S, Aisen P, Cano LE, et al. Detection of melanin-like pigments in the dimorphic fungal pathogen Paracoccidioides brasiliensis in vitro and during infection. Infect Immun. 2001;69(9):5760–7.

    Article  PubMed  CAS  Google Scholar 

  5. Romero-Martinez R, Wheeler M, Guerrero-Plata A, Rico G, Torres-Guerrero H. Biosynthesis and functions of melanin in Sporothrix schenckii. Infect Immun. 2000;68(6):3696–703.

    Article  PubMed  CAS  Google Scholar 

  6. Nosanchuk JD, Gomez BL, Youngchim S, Diez S, Aisen P, Zancope-Oliveira RM, et al. Histoplasma capsulatum synthesizes melanin-like pigments in vitro and during mammalian infection. Infect Immun. 2002;70(9):5124–31.

    Article  PubMed  CAS  Google Scholar 

  7. Nosanchuk JD, van Duin D, Mandal P, Aisen P, Legendre AM, Casadevall A. Blastomyces dermatitidis produces melanin in vitro and during infection. FEMS Microbiol Lett. 2004;239(1):187–93. doi:10.1016/j.femsle.2004.08.040.

    Article  PubMed  CAS  Google Scholar 

  8. Tsai HF, Fujii I, Watanabe A, Wheeler MH, Chang YC, Yasuoka Y, et al. Pentaketide melanin biosynthesis in Aspergillus fumigatus requires chain-length shortening of a heptaketide precursor. J Biol Chem. 2001;276(31):29292–8. doi:10.1074/jbc.M101998200.

    Article  PubMed  CAS  Google Scholar 

  9. Farbiarz SR, de Carvalho TU, Alviano C, de Souza W. Inhibitory effect of melanin on the interaction of Fonsecaea pedrosoi with mammalian cells in vitro. J Med Vet Mycol. 1992;30(4):265–73.

    Article  PubMed  CAS  Google Scholar 

  10. Alviano CS, Farbiarz SR, De Souza W, Angluster J, Travassos LR. Characterization of Fonsecaea pedrosoi melanin. J Gen Microbiol. 1991;137(4):837–44.

    PubMed  CAS  Google Scholar 

  11. Alviano DS, Franzen AJ, Travassos LR, Holandino C, Rozental S, Ejzemberg R, et al. Melanin from Fonsecaea pedrosoi induces production of human antifungal antibodies and enhances the antimicrobial efficacy of phagocytes. Infect Immun. 2004;72(1):229–37.

    Article  PubMed  CAS  Google Scholar 

  12. Franzen AJ, de Souza W, Farina M, Alviano CS, Rozental S. Morphometric and densitometric study of the biogenesis of electron-dense granules in Fonsecaea pedrosoi. FEMS Microbiol Lett. 1999;173(2):395–402.

    Article  PubMed  CAS  Google Scholar 

  13. Franzen AJ, Cunha MM, Batista EJ, Seabra SH, De Souza W, Rozental S. Effects of tricyclazole (5-methyl-1, 2, 4-triazol[3, 4] benzothiazole), a specific DHN-melanin inhibitor, on the morphology of Fonsecaea pedrosoi conidia and sclerotic cells. Microsc Res Tech. 2006;69(9):729–37. doi:10.1002/jemt.20344.

    Article  PubMed  CAS  Google Scholar 

  14. Cunha MM, Franzen AJ, Alviano DS, Zanardi E, Alviano CS, De Souza W, et al. Inhibition of melanin synthesis pathway by tricyclazole increases susceptibility of Fonsecaea pedrosoi against mouse macrophages. Microsc Res Tech. 2005;68(6):377–84. doi:10.1002/jemt.20260.

    Article  PubMed  CAS  Google Scholar 

  15. Santos AL, Palmeira VF, Rozental S, Kneipp LF, Nimrichter L, Alviano DS, et al. Biology and pathogenesis of Fonsecaea pedrosoi, the major etiologic agent of chromoblastomycosis. FEMS Microbiol Rev. 2007;31(5):570–91. doi:10.1111/j.1574-6976.2007.00077.x.

    Article  PubMed  CAS  Google Scholar 

  16. Nosanchuk JD, Rosas AL, Casadevall A. The antibody response to fungal melanin in mice. J Immunol. 1998;160(12):6026–31.

    PubMed  CAS  Google Scholar 

  17. Rosas AL, Nosanchuk JD, Feldmesser M, Cox GM, McDade HC, Casadevall A. Synthesis of polymerized melanin by Cryptococcus neoformans in infected rodents. Infect Immun. 2000;68(5):2845–53.

    Article  PubMed  CAS  Google Scholar 

  18. Alviano CS, Farbiarz SR, Travassos LR, Angluster J, de Souza W. Effect of environmental factors on Fonsecaea pedrosoi morphogenesis with emphasis on sclerotic cells induced by propranolol. Mycopathologia. 1992;119(1):17–23.

    PubMed  CAS  Google Scholar 

  19. Polak A, Dixon DM. Loss of melanin in Wangiella dermatitidis does not result in greater susceptibility to antifungal agents. Antimicrob Agents Chemother. 1989;33(9):1639–40.

    PubMed  CAS  Google Scholar 

  20. van de Sande WW, de Kat J, Coppens J, Ahmed AO, Fahal A, Verbrugh H, et al. Melanin biosynthesis in Madurella mycetomatis and its effect on susceptibility to itraconazole and ketoconazole. Microbes Infect. 2007;9(9):1114–23. doi:10.1016/j.micinf.2007.05.015.

    Article  PubMed  Google Scholar 

  21. Xi L, Lu C, Sun J, Li X, Liu H, Zhang J, et al. Chromoblastomycosis caused by a meristematic mutant of Fonsecaea monophora. Med Mycol. 2009;47(1):77–80. doi:10.1080/13693780802322588.

    Article  PubMed  Google Scholar 

  22. Najafzadeh MJ, Sun J, Vicente V, Xi L, van den Ende AH, de Hoog GS. Fonsecaea nubica sp. nov, a new agent of human chromoblastomycosis revealed using molecular data. Med Mycol. 2010. doi:10.3109/13693780903503081.

    Google Scholar 

  23. Witkin EM. Radiation-induced mutations and their repair. Science. 1966;152(727):1345–53.

    Article  PubMed  CAS  Google Scholar 

  24. Kawamura C, Tsujimoto T, Tsuge T. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Mol Plant Microbe Interact. 1999;12(1):59–63. doi:10.1094/MPMI.1999.12.1.59.

    Article  PubMed  CAS  Google Scholar 

  25. Ruiz-Diez B, Martinez-Suarez JV. Isolation, characterization, and antifungal susceptibility of melanin-deficient mutants of Scedosporium prolificans. Curr Microbiol. 2003;46(3):228–32. doi:10.1007/s00284-002-3858-7.

    Article  PubMed  CAS  Google Scholar 

  26. Schmaler-Ripcke J, Sugareva V, Gebhardt P, Winkler R, Kniemeyer O, Heinekamp T, et al. Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. Appl Environ Microbiol. 2009;75(2):493–503. doi:10.1128/AEM.02077-08.

    Article  PubMed  CAS  Google Scholar 

  27. Wang Y, Aisen P, Casadevall A. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun. 1995;63(8):3131–6.

    PubMed  CAS  Google Scholar 

  28. Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol. 2003;38(2):143–58.

    Article  PubMed  CAS  Google Scholar 

  29. Jacobson ES. Pathogenic roles for fungal melanins. Clin Microbiol Rev. 2000;13(4):708–17.

    Article  PubMed  CAS  Google Scholar 

  30. Taborda CP, da Silva MB, Nosanchuk JD, Travassos LR. Melanin as a virulence factor of Paracoccidioides brasiliensis and other dimorphic pathogenic fungi: a minireview. Mycopathologia. 2008;165(4–5):331–9.

    Article  PubMed  CAS  Google Scholar 

  31. Rozental S, Alviano CS, de Souza W. Fine structure and cytochemical study of the interaction between Fonsecaea pedrosoi and rat polymorphonuclear leukocyte. J Med Vet Mycol. 1996;34(5):323–30.

    Article  PubMed  CAS  Google Scholar 

  32. Cunha MM, Franzen AJ, Seabra SH, Herbst MH, Vugman NV, Borba LP, et al. Melanin in Fonsecaea pedrosoi: a trap for oxidative radicals. BMC Microbiol. 2010;10:80. doi:10.1186/1471-2180-10-80.

    Article  PubMed  Google Scholar 

  33. Howard RJ, Valent B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol. 1996;50:491–512. doi:10.1146/annurev.micro.50.1.491.

    Article  PubMed  CAS  Google Scholar 

  34. Dixon DM, Migliozzi J, Cooper CR Jr, Solis O, Breslin B, Szaniszlo PJ. Melanized and non-melanized multicellular form mutants of Wangiella dermatitidis in mice: mortality and histopathology studies. Mycoses. 1992;35(1–2):17–21.

    PubMed  CAS  Google Scholar 

  35. Fothergill AW. Identification of dematiaceous fungi and their role in human disease. Clin Infect Dis. 1996;22(Suppl 2):S179–84.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Fund for the Doctoral Program of Higher Education of China (No. 20100171110068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyan Xi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Zhang, J., Najafzadeh, M.J. et al. Melanization of a Meristematic Mutant of Fonsecaea monophora Increases Tolerance to Stress Factors While no Effects on Antifungal Susceptibility. Mycopathologia 172, 373–380 (2011). https://doi.org/10.1007/s11046-011-9439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-011-9439-1

Keywords

Navigation