Skip to main content

Advertisement

Log in

Role of Host Glycosphingolipids on Paracoccidioides brasiliensis Adhesion

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Binding of yeast forms to human lung fibroblast cultures was analyzed, aiming to better understand the initial steps of Paracoccidioides brasiliensis infection in humans. A significant P. brasiliensis adhesion was observed either to fibroblasts or to their Triton X-100 insoluble fraction, which contains extracellular matrix and membrane microdomains enriched in glycosphingolipids. Since human lung fibroblasts express at cell-surface gangliosides, such as GM1, GM2, and GM3, the role of these glycosphingolipids on P. brasiliensis adhesion was analyzed by different procedures. Anti-GM3 monoclonal antibody or cholera toxin subunit B (which binds specifically to GM1) reduced significantly fungal adhesion to fibroblast cells, by 35% and 33%, respectively. Direct binding of GM1 to yeast forms of P. brasiliensis was confirmed using cholera toxin subunit B conjugated to AlexaFluor®488. It was also demonstrated that P. brasiliensis binds to polystyrene plates coated with galactosylceramide, lactosylceramide, trihexosylceramide, GD3, GM1, GM3, and GD1a, suggesting that glycosphingolipids presenting residues of beta-galactose or neuraminic acid at non-reducing end may act as adhesion molecules for P. brasiliensis. Conversely, no binding was detected when plates were adsorbed with glycosphingolipids that contain terminal residue of beta-N-acetylgalactosamine, such as globoside (Gb4), GM2, and asialo-GM2. In human fibroblast (WI-38 cells), GM3 and GM1 are associated with membrane rafts, which remain insoluble after treatment with Triton X-100 at 4°C. Taken together, these results strongly suggest that lung fibroblast gangliosides, GM3 and GM1, are involved in binding and/or infection by P. brasiliensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. San-Blas G, Nino-Vega G. Paracoccidioides brasiliensis: chemical and molecular tools for research on cell walls, antifungals, diagnosis, taxonomy. Mycopathologia. 2008;165:183–95. doi:10.1007/s11046-007-9040-9.

    Article  PubMed  Google Scholar 

  2. Mendes-Giannini MJS, da Silva JLM, da Silva JD, Donofrio FC, Miranda ET, Andreotti PF, Soares CP. Interactions of Paracoccidioides brasiliensis with host cells: recent advances. Mycopathologia. 2008;165:237–48. doi:10.1007/s11046-007-9074-z.

    Article  PubMed  Google Scholar 

  3. Joh D, Wann ER, Kreikemeyer B, Speziale P, Hook M. Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells. Matrix Biol. 1999;18:211–23. doi:10.1016/S0945-053X(99)00025-6.

    Article  PubMed  CAS  Google Scholar 

  4. Lima OC, Figueiredo CC, Previato JO, Mendonca-Previato L, Morandi V, Bezerra LML. Involvement of fungal cell wall components in adhesion of Sporothrix schenckii to human fibronectin. Infect Immun. 2001;69:6874–80. doi:10.1128/IAI.69.11.6874-6880.2001.

    Article  PubMed  CAS  Google Scholar 

  5. Sundstrom P. Adhesins in Candida albicans. Curr Opin Microbiol. 1999;2:353–7. doi:10.1016/S1369-5274(99)80062-9.

    Article  PubMed  CAS  Google Scholar 

  6. Bouchara JP, Sanchez M, Chevailler A, MarotLeblond A, Lissitzky JC, Tronchin G, Chabasse D. Sialic acid-dependent recognition of laminin and fibrinogen by Aspergillus fumigatus conidia. Infect Immun. 1997;65:2717–24.

    PubMed  CAS  Google Scholar 

  7. Klein BS. Molecular basis of pathogenicity in Blastomyces dermatitidis: the importance of adhesion. Curr Opin Microbiol. 2000;3:339–43. doi:10.1016/S1369-5274(00)00100-4.

    Article  PubMed  CAS  Google Scholar 

  8. Mendes-Giannini MJS, Soares CP, da Silva JLM, Andreotti PF. Interaction of pathogenic fungi with host cells: molecular and cellular approaches. FEMS Immunol Med Microbiol. 2005;45:383–94. doi:10.1016/j.femsim.2005.05.014.

    Article  PubMed  CAS  Google Scholar 

  9. Gonzalez A, Gomez BL, Diez S, Hernandez O, Restrepo A, Hamilton AJ et al. Purification and partial characterization of a Paracoccidioides brasiliensis protein with capacity to bind to extracellular matrix proteins. Infect Immun. 2005;73:2486–95. doi:10.1128/iai.73.4.2486-2495.2005.

    Article  PubMed  CAS  Google Scholar 

  10. Barbosa MS, Bao SN, Andreotti PF, de Faria FP, Felipe MSS, Feitosa LD, Mendes-Giannini MJS, Soares CMD. Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. Infect Immun. 2006;74:382–9. doi:10.1128/iai.74.1.382-389.2006.

    Article  PubMed  CAS  Google Scholar 

  11. Vicentini AP, Gesztesi JL, Franco MF, Desouza W, Demoraes JZ, Travassos LR, Lopes JD. Binding of Paracoccidioides brasiliensis to laminin through surface glycoprotein gp43 leads to enhancement of fungal pathogenesis. Infect Immun. 1994;62:1465–9.

    PubMed  CAS  Google Scholar 

  12. Donofrio F, Calil A, Miranda E, Almeida A, Benard G, Soares C, Veloso S, Soares C, Mendes Giannini M. Enolase from Paracoccidioides brasiliensis: isolation and identification as a fibronectin-binding protein. J Med Microbiol. 2009;58:706–13. doi:10.1099/jmm.0.003830-0.706.

    Article  PubMed  CAS  Google Scholar 

  13. da Silva Neto B, de Fátima da Silva J, Mendes-Giannini M, Lenzi H, Almeida Soares C, Pereira M. The malate synthase of Paracoccidioides brasiliensis is a linked surface protein that behaves as an anchorless adhesin. BMC Microbiol. 2009;9:272. doi:10.1186/1471-2180-9-272.

    Article  PubMed  Google Scholar 

  14. Riethmuller J, Riehle A, Grassme H, Gulbins E. Membrane rafts in host-pathogen interactions. Biochim Biophys Acta. 2006;1758:2139–47. doi:10.1016/j.bbamem.2006.07.017.

    Article  PubMed  Google Scholar 

  15. Lafont F, van der Goot FG. Bacterial invasion via lipid rafts. Cell Microbiol. 2005;7:613–20. doi:10.1111/j.1462-5822.2005.00515.x.

    Article  PubMed  CAS  Google Scholar 

  16. Takahashi HK, Toledo MS, Suzuki E, Tagliari L, Straus AH. Current relevance of fungal and trypanosomatid glycolipids and sphingolipids: studies defining structures conspicuously absent in mammals. An Acad Bras Cienc. 2009;81:477–88. doi:10.1590/S0001-37652009000300012.

    PubMed  CAS  Google Scholar 

  17. Fernandes MC, Cortez M, Yoneyama KAG, Straus AH, Yoshida N, Mortara RA. Novel strategy in Trypanosoma cruzi cell invasion: implication of cholesterol and host cell microdomains. Int J Parasitol. 2007;37:1431–41. doi:10.1016/j.ijpara.2007.04.025.

    Article  PubMed  CAS  Google Scholar 

  18. Krivan HC, Roberts DD, Ginsburg V. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAcβ1–4Gal found in some glycolipids. Proc Natl Acad Sci (USA). 1988;85:6157–61.

    Article  CAS  Google Scholar 

  19. Hug P, Lin H, Korte T, Xiao X, Dimitrov D, Wang J, Puri A, Blumenthal R. Glycosphingolipids promote entry of a broad range of human immunodeficiency virus type 1 isolates into cell lines expressing CD4, CXCR4, and/or CCR5. J Virol. 2000;74:6377–85.

    Article  PubMed  CAS  Google Scholar 

  20. Maza PK, Straus AH, Toledo MS, Takahashi HK, Suzuki E. Interaction of epithelial cell membrane rafts with Paracoccidioides brasiliensis leads to fungal adhesion and Src-family kinase activation. Microb Infect. 2008;10:540–7. doi:10.1016/j.micinf.2008.02.004.

    Article  CAS  Google Scholar 

  21. Jimenez-Lucho V, Ginsburg V, Krivan H. Cryptococcus neoformans, Candida albicans, and other fungi bind specifically to the glycosphingolipid lactosylceramide (Galβ1–4Glcβ1–1Cer), a possible adhesion receptor for yeasts. Infect Immun. 1990;58:2085–90.

    PubMed  CAS  Google Scholar 

  22. Hakomori S. Chemistry of glycosphingolipids. In: Janfer JN, Hakomori S, editors. Sphingolipid biochemistry. New York and London: Plenum Press; 1983. p. 1–165.

    Google Scholar 

  23. Dohi T, Nores G, Hakomori S. An IgG3 monoclonal antibody established after immunization with GM3 lactone: immunochemical specificity and inhibition of melanoma cell growth in vitro and in vivo. Cancer Res. 1988;48:5680–5.

    PubMed  CAS  Google Scholar 

  24. Straus AH, Levery SB, Jasiulionis MG, Salyan MEK, Steele SJ, Travassos LR, Hakomori SI, Takahashi HK. Stage-specific glycosphingolipids from amastigote forms of Leishmania (L.) amazonensis. Immunogenicity and role in parasite binding and invasion of macrophages. J Biol Chem. 1993;268:13723–30.

    PubMed  CAS  Google Scholar 

  25. Okada Y, Mugnai G, Bremer E, Hakomori S. Glycosphingolipids in detergent-insoluble substrate attachment matrix (DISAM) prepared from substrate attachment material (SAM). Their possible role in regulating cell adhesion. Exp Cell Res. 1984;155:448–56. doi:10.1016/0014-4827(84)90205-2.

    Article  PubMed  CAS  Google Scholar 

  26. Torres B, McCrumb D, Smith D. Glycolipid-lectin interactions: reactivity of lectins from Helix pomatia, Wisteria floribunda, and Dolichos biflorus with glycolipids containing N-acetylgalactosamine. Arch Biochem Biophys. 1988;262:1–11. doi:10.1016/0003-9861(88)90161-0.

    Article  PubMed  CAS  Google Scholar 

  27. Carter W, Hakomori S. A new cell surface, detergent-insoluble glycoprotein matrix of human and hamster fibroblasts. The role of disulfide bonds in stabilization of the matrix. J Biol Chem. 1981;256:6953–60.

    PubMed  CAS  Google Scholar 

  28. Hakomori S. Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconj J. 2000;17:143–51. doi:10.1023/A:1026524820177.

    Article  PubMed  CAS  Google Scholar 

  29. Hakomori S. Bifunctional role of glycosphingolipids: modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem. 1990;265:18713–6.

    PubMed  CAS  Google Scholar 

  30. Suzuki E, Tanaka AK, Toledo MS, Levery SB, Straus AH, Takahashi HK. Trypanosomatid and fungal glycolipids and sphingolipids as infectivity factors and potential targets for development of new therapeutic strategies. Bioch Biophys Acta. 2008;1780:362–9. doi:10.1016/j.bbagen.2007.09.009.

    CAS  Google Scholar 

  31. Gonzales A, Caro E, Munoz C, Restrepo A, Hamilton AJ, Cano LE. Paracoccidioides brasiliensis conidia recognize fibronectin and fibrinogen which participate in adherence to human type II alveolar cells: involvement of a specific adhesin. Microb Pathogen. 2008;358:389–401. doi:10.1016/j.micpath.2007.11.001.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Pesquisa (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita H. Straus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ywazaki, C.Y., Maza, P.K., Suzuki, E. et al. Role of Host Glycosphingolipids on Paracoccidioides brasiliensis Adhesion. Mycopathologia 171, 325–332 (2011). https://doi.org/10.1007/s11046-010-9376-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-010-9376-4

Keywords

Navigation