Skip to main content
Log in

Genetic Diversity of Cercospora kikuchii Isolates From Soybean Cultured in Argentina as Revealed by Molecular Markers and Cercosporin Production

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Leaf blight and purple seed, caused by the fungal pathogen Cercospora kikuchii (Matsumoto & Tomoyasu) M. W. Gardner are very important diseases of soybean (Glycine max L. Merr.) in Argentina. The aims of this work were: (a) to confirm and to assess the genetic variability among C. kikuchii isolates collected from different soybean growing areas in Santa Fe province using inter simple sequence repeats (ISSR) markers and sequence information from the internal transcribed spacer (ITS) region of rDNA and (b) to analyze the cercosporin production of the regional C. kikuchi isolates in order to assess whether there was any relationship between the molecular profiles and the toxin production. Isolates from different regions in Santa Fe province were studied. The sequence of the ITS regions showed high similarity (99–100%) to the GenBank sequences of C. kikuchii BRCK179 (accession number AY633838). The ISSR markers clustered all the isolates into many groups and cercosporin content was highly variable among isolates. No relationship was observed between ITS region, ISSR groups and origin or cercosporin content. The high degree of genetic variability and cercosporin production among isolates compared in this study characterizes a diverse population of C. kikuchii in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chupp C. A monograph of the fungus genus Cercospora. 1st ed. New York: Ithaca; 1954.

    Google Scholar 

  2. Siboe GM, Murray J, Kirk PM. Genetic similarity among Cercospora apii-group species and their detection in host plant tissue by PCR/RFLP analysis of the rDNA internal transcribed spacer (ITS). J Gen Appl Microbiol. 2000;46:69–78. doi:10.2323/jgam.46.69.

    Article  PubMed  CAS  Google Scholar 

  3. Cai G. Cercospora leaf blight of soybean: pathogen vegetative compatibility groups, population structure, and host resistance. Doctoral Thesis. Lousiana State University. 2004. http://etd.lsu.edu/docs/available/etd-12112003-143624/. Accessed 8 Ago 2009.

  4. Distéfano S, Gadbán L. Panorama fitopatológico del cultivo de soja en la campaña 2006–2007. Soja Actualización 2007. Informe de Actualización Técnica. INTA, Estación Experimental Agropecuaria Marcos Juárez. 2007;7:15–9.

    Google Scholar 

  5. Rigonatto R, Cabrera G, Méndez M. Evaluación de fungicidas para el control de roya de la soja. 2007. http://www.inta.gov.ar/corrientes/info/documentos/Arroz/07/PDF%2007/26-Roya%20informe%20secretar%C3%ADa-A.pdf.

  6. Assante G, Locci R, Camarda L, Merlini L, Nasini G. Screening of the genus Cercospora for secondary metabolites. Phytochemistry. 1977;16:243–7. doi:10.1016/S0031-9422(00)86794-1.

    Article  CAS  Google Scholar 

  7. Kuyama S, Tamura T. Cercosporin. A pigment of Cercospora kikuchii Matsumoto et Tomoyasu. Cultivation of fungus, isolation and purification of pigment. J Am Chem Soc. 1957;79:5725–6.

    Article  CAS  Google Scholar 

  8. Upchurch RG, Walker DC, Rollins JA, Ehrenshaft M, Daub ME. Mutants of Cercospora kikuchii altered in cercosporin synthesis and pathogenicity. Appl Environm Microbiol. 1991;57:2940–5.

    CAS  Google Scholar 

  9. Daub ME. Cercosporin, a photosensing toxin from Cercospora spp. Phytopathol. 1982;72:370–4.

    Article  CAS  Google Scholar 

  10. Daub ME, Ehrenshaft M. The photoactivated Cercospora toxin cercosporin: Contributions to plant disease and fundamental biology. Ann Rev Phytopathol. 2000;38:461–90.

    Article  CAS  Google Scholar 

  11. Daub ME, Hangarter RP. Light-induced production of singlet oxygen and superoxide by the fungal toxin, cercosporin. Plant Physiol. 1983;73:855–7.

    Article  PubMed  CAS  Google Scholar 

  12. Yamazaki S, Okubo A, Akiyama Y, Fuwa K. Cercosporin, a novel photodynamic pigment isolated from Cercospora kikuchii. Agric Biol Chem. 1975;39:287–8.

    CAS  Google Scholar 

  13. Daub ME, Briggs SP. Changes in tobacco cell membrane composition and structure caused by the fungal toxin, cercosporin. Plant Physiol. 1983;71:763–6.

    Article  PubMed  CAS  Google Scholar 

  14. Leisman GB, Daub ME. Singlet oxygen yields, optical properties, and phototoxicity of reduced derivatives of the photosensitizer cercosporin. Photochem Photobiol. 1992;55:373–9.

    Article  CAS  Google Scholar 

  15. Upchurch RG, Rose MS, Eweida M, Callahan TM. Transgenic assessment of CFP-mediated cercosporin export and resistance in a cercosporin sensitive fungus. Curr Genet. 2002;41:25–30. doi:10.1007/s00294-002-0280-4.

    Article  PubMed  CAS  Google Scholar 

  16. Formento N, Daverio L. Enfermedades de fin de ciclo del cultivo de la soja. Campaña Agrícola 2000/01. Area de Investigación en Producción Vegetal. INTA, Estación Experimental Agropecuaria Paraná. 2002. http://www.inta.gov.ar/PARANA/info/documentos/produccion_vegetal/soja/enfermedades/Soja_Enf._de_Fin_de_Ciclo.pdf.

  17. Crous PW, Braun U. Mycosphaerella and its anamorphs: 1. Names published in Cercospora and Passalora. 1st ed. The Netherlands: Centralbureau voor Schimmel-cultures; 2003.

    Google Scholar 

  18. Gams W, van der Aa HA, van der Plaats-Niterink AJ, Samsom RA, Stalpers JA. CBS Course of mycology. 3rd ed. Baam: Centralbureau voor Schimmel-cultures; 1987.

    Google Scholar 

  19. Inglis PW, Teixeira EA, Ribeiro DM, Valadares-Inglis C, Togano M, Mello SC. Molecular markers for the characterization of Brazilian Cercospora caricis isolates. Current Microbiol. 2001;42:194–8. doi:10.1007/s002840010203.

    Article  PubMed  CAS  Google Scholar 

  20. Arenal D, Platas G, Martin J, Salazar O, Peláez E. Evaluation of different PCR-based DNA fingerprinting techniques for assessing the genetic variability of isolates of the fungus Epicoccum nigrum. J Appl Microbiol. 1999;67:896–906. doi:10.1046/j.1365-2672.1999.00946.x.

    Google Scholar 

  21. Baldwin BG. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol Phylogenet Evol. 1992;1:3–16. doi:10.1016/1055-7903(92)90030-K.

    Article  PubMed  CAS  Google Scholar 

  22. Pacheco ABF, Guth BEC, de Almeida DF, Ferreira LCS. Characterization of enterotoxigenic Escherichia coli by Ramdom Amplification of Polymorphic DNA. Microbiol Res. 1996;147:175–82.

    Article  CAS  Google Scholar 

  23. Chen W, Hoy JW, Schneider RW. Species-specific polymorphism in transcribed ribosomal DNA of the five Pythium species. Exp Mycol. 1992;18:22–34.

    Article  Google Scholar 

  24. Lee SB, Taylor JW. Phylogeny of the five fungus-like protoctistan Phytophthora species, inferred from the internal transcribed spacers of ribosomal DNA. Mol Biol Evol. 1992;9:636–53.

    PubMed  CAS  Google Scholar 

  25. Sharma S, Rustgi S, Balyan HS, Gupta PK. Internal transcribed spacer (ITS) sequences of ribosomal DNA of wild barley and their comparison with ITS sequences in common wheat. Barley Genet Newsletter 2002;32:38–45. http://wheat.pw.usda.gov/ggpages/bgn/32/Sharma.htm. Accessed 24 sept 2009.

  26. Moreno MV, Steinglein SA, Balatti PA, Perelló AE. Pathogenic and molecular variability among isolates of Pyrenophora triciti-repentis, causal agent of tan spot of wheat in Argentina. Eur J Plant Pathol. 2008;122:239–52.

    Article  Google Scholar 

  27. Wagner S, Idczak E. Molecular Identification of races of Bremia lactucae with ISSR-Primer. 2004. http://archives.eppo.org/MEETINGS/2004_meetings/diag_posters/poster_Wagner_Bremia.pdf. Accessed 6 Jul 2009.

  28. Tang JCO, Lam KY, Law S, Wong J, Srivastava G. Detection of genetic alterations in esophageal squamous cell carcinomas and adjacent normal epithelia by comparative DNA fingerprinting using inter-simple sequence repeat PCR. Clin Cancer Res. 2001;7:1539–45.

    PubMed  CAS  Google Scholar 

  29. Mattio MC, Turino L, González AM, Di Conza JA, Latorre Rapela MG, Vaccari MC, Iacona VA, Lurá MC. Cercospora patógenas de soja: influencia de factores ambientales sobre su desarrollo. Degradación biológica de cercosporina. Rev FABICIB. 2008;12:25–32.

    Google Scholar 

  30. González AM, Turino L, Latorre Rapela MG, Lurá MC. Cercospora kikuchii aislada en la provincia de Santa Fe (Argentina): variabilidad genética y producción de cercosporina in vitro. Rev Iberoam Micol. 2008;25:237–41.

    Article  PubMed  Google Scholar 

  31. Lurá MC, Di Conza JA, González AM, Latorre Rapela MG, Turino L, Ibáñez MM, Iacona V. Detección de variabilidad genética en aislamientos de Cercospora kikuchii contaminantes de un mismo sembradío de soja. Rev Argent Microbiol. 2007;39:11–4.

    PubMed  Google Scholar 

  32. Salvador D, Garrido MI. Características culturales y patogenicidad del hongo causante de la mancha en cadena del sorgo. Fitopatol Venez. 1990;3:11–5.

    Google Scholar 

  33. Di Conza JA, Nepote AF, González AM, Lurá MC. (GTG)5 microsatellite regions in citrinin-producing Penicillium. Rev Iberoam Micol. 2007;24:34–7.

    Article  PubMed  Google Scholar 

  34. Bundie AG, Martinez-Culebras P, Bridge PD, Cannon PF, Querol A, García MD, Monte E. Molecular characterization of Colletotrichum strains derived from strawberry. Mycol Res. 1999;103:385–94.

    Article  Google Scholar 

  35. Sambrook J, Frisch EF, Maniatis T. Molecular cloning: a laboratory manual. 1st ed. New York: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  36. Almeida AMR, Piuga FF, Marín SRR, Binneck E, Sartori F, Costamilan LM, Teixeira MRO, Lopes M. Pathogenicity, molecular characterization, and cercosporin content of brazilian isolates of Cercospora kikuchii. Fitopatol Bras. 2005;30:594–602. doi:10.1590/S0100-41582005000600005.

    Google Scholar 

  37. Brunelli KR. Cercospora zeae-maydis: Esporulaçao, diversidade morfo-genética e reaçao de linhagens de milho (Tese Doutorado). Escola Superior de Agricultura “Luiz de Queiroz”. Universidade de Sao Paulo. Brasil. 2004. http://www.teses.usp.br/teses/disponiveis/11/11135/tde-13122004-085408. Accessed 22 oct 2009.

  38. Wang J, Levy M, Dunkle LD. Sibling species of Cercospora associated with gray leaf spot of maize. Phytopathol. 1998;88:1269–75. doi:10.1094/PHYTO.1998.88.12.1269.

    Article  CAS  Google Scholar 

  39. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. London: Academic Press; 1990. p. 315–22.

    Google Scholar 

  40. Longato S, Bonfante P. Molecular identification of mycorrhizal fungi by direct amplification of microsatellite regions. Mycol Res. 1997;101:425–32. doi:10.1017/S0953756296002766.

    Article  CAS  Google Scholar 

  41. Jenns AE, Daub ME, Upchurch RG. Regulation of cercosporin accumulation in culture by medium and temperature manipulation. Phytopathol. 1989;79:213–9. doi:10.1094/Phyto-79-213.

    Article  CAS  Google Scholar 

  42. Aizen M, Garibaldi L, Dondo M. Expansión de la soja y diversidad de la agricultura argentina. Ecol Austral. 2009;19:45–54.

    Google Scholar 

  43. Penna JA, Lema D. Adoption of herbicide resistant soybeans in Argentina: an economic analysis. In: Kalaitzandonakes N, editor. Economic and Environmental impacts of Agbiotech. Dordrecht: Kluwer Academic Publishers; 2002. http//www.inta.gov.ar/ies/docs/doctrab/adoption_dt_18.PDF.

  44. Redondo C, Cubero J, Melgarejo P. Characterization of Penicillium species by ribosomal DNA sequencing, BOX, ERIC and REP-PCR analysis. Mycopathologia. 2009;168:11–22. doi:10.1007/s11046-009-9191-y.

    Article  PubMed  CAS  Google Scholar 

  45. Ristaino JB, Madritch M, Trout CL, Parra G. PCR amplification of ribosomal DNA for species identification in the plant pathogen genus Phytophthora. Appl Environ Microbiol. 1998;64:948–54.

    PubMed  CAS  Google Scholar 

  46. Somai BM, Dean RA, Farnham MW, Zitter TA, Keinath AP. Internal transcribed spacer regions 1 and 2 and random amplified polymorphic DNA analysis of Didymella bryoniae and related Phoma species isolated from cucurbits. Phytopathol. 2002;92:997–1004. doi:10.1094/PHYTO.2002.92.9.997.

    Article  CAS  Google Scholar 

  47. Souframanien J, Joshi A, Gapalakrishna T. Intraspecific variation in the internal transcribed spacer region of rDNA in black gram (Vigna mungo (L.) Hepper). Curr Sci. 2003;85:798–802.

    CAS  Google Scholar 

  48. Goodwin SB, Dunkle LD, Zismann VL. Phylogenetic analysis of Cercospora and Mycosphaerella based on the internal transcribed spacer region of ribosomal DNA. Phytopathol. 2001;91:648–58. doi:10.1094/PHYTO.2001.91.7.648.

    Article  CAS  Google Scholar 

  49. Pujol Vieira dos Santos AM, Santos Matsumura AT, Van der Sand ST. Intraspecific genetic diversity of Drechslera triciti-repentis as detected by a ramdom amplified polymorphic DNA analysis. Genet Mol Biol. 2002;25:243–50.

    Google Scholar 

  50. Stenglein SA, Ballatti PA. Genetic diversity of Phaeoisariopsis griseola in Argentina as revealed by pathogenic and molecular markers. Physiol Mol Plant Path. 2006;68:158–67. doi:10.1016/j.pmpp.2006.10.001.

    Article  CAS  Google Scholar 

  51. Joshi A, Souframanien J, Chand R, Pawar SE. Genetic diversity study of Cercospora canescens (Ellis & Martin) isolates, the pathogen of Cercospora leaf spot in legumes. Curr Sci. 2006;90:564–8.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from Universidad Nacional del Litoral, Argentina, CAID 2009. The authors would like to thank Monitors belonging to RiiA Program for their kind help in providing samples and Ing. Lello Herzog for his very useful opinions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Cristina Lurá.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lurá, M.C., Latorre Rapela, M.G., Vaccari, M.C. et al. Genetic Diversity of Cercospora kikuchii Isolates From Soybean Cultured in Argentina as Revealed by Molecular Markers and Cercosporin Production. Mycopathologia 171, 361–371 (2011). https://doi.org/10.1007/s11046-010-9362-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-010-9362-x

Keywords

Navigation