Skip to main content

Advertisement

Log in

Response to Oxidative Stress in Eight Pathogenic Yeast Species of the Genus Candida

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

In the course of an infection, the formation of reactive oxygen species by phagocytes and the antioxidant defense mechanisms of microorganisms play a crucial role in pathogenesis. In this study, isolates representing 8 pathogenic Candida species—Candida albicans, Candida dubliniensis, Candida famata, Candida glabrata, Candida guilliermondii, Candida krusei, Candida parapsilosis and Candida tropicalis—were compared with regard to their resistance to oxidative stress in vitro. We evaluated degree of resistance, induction of oxidative damage, capacity to adapt, and induction of antioxidant enzymes. The species showed variable sensitivity to oxidative attack. C. albicans, C. glabrata, and C. krusei were more resistant to oxidative stress under the conditions tested; C. parapsilosis and C. tropicalis presented medium resistance; and C. dubliniensis, C. famata, and C. guilliermondii were more sensitive. The overall greater resistance to oxidative stress of C. albicans and C. glabrata may provide an advantage to these species, which are the major causative agents of candidiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berman J, Sudbery PE. Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet. 2002;3:918–30.

    Article  CAS  PubMed  Google Scholar 

  2. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20:133–63.

    Article  CAS  PubMed  Google Scholar 

  3. Pfaller MA, Diekema DJ, Messer SA, Boyken L, Hollis RJ. Activities of fluconazole and voriconazole against 1, 586 recent clinical isolates of Candida species determined by broth microdilution, disk diffusion, and Etest methods: report from The ARTEMIS Global Antifungal Susceptibility Program, 2001. J Clin Microbiol. 2003;41:1440–6.

    Article  CAS  PubMed  Google Scholar 

  4. Kremery V, Barnes AJ. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect. 2002;50:243–60.

    Article  Google Scholar 

  5. Cantón EC, Pemán J, Gobernado M, Viudes A, Espinel-Ingroff A. Patterns of amphotericin B killing kinetics against seven Candida species. Antimicrob Agents Chemother. 2004;48:2477–82.

    Article  PubMed  Google Scholar 

  6. Kaur R, Domergue R, Zupancic ML, Cormack BP. A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol. 2005;8:378–84.

    Article  CAS  PubMed  Google Scholar 

  7. Weig M, Brown AJP. Genomics and the development of new diagnostics and anti-Candida drugs. Trends Microbiol. 2007;15:310–7.

    Article  CAS  PubMed  Google Scholar 

  8. Reeves EP, Lu H, Jacobs HL, Messina CGM, Bolsover S, Gabella G, et al. Killing activity of neutrophils is mediated through activation of proteases by K + influx. Nature. 2002;416:291–7.

    Article  CAS  PubMed  Google Scholar 

  9. Fang F. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol. 2004;2:820–32.

    Article  CAS  PubMed  Google Scholar 

  10. Antunes F, Salvador A, Marinho HS, Alves R, Pinto RE. Lipid peroxidation in mitochondrial inner membranes I. An integrative kinetic model. Free Radic Biol Med. 1996;21:917–43.

    Article  CAS  PubMed  Google Scholar 

  11. Stadman ER, Berkett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol. 1997;10:485–94.

    Article  Google Scholar 

  12. Moye-Rowley WS. Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences. Eukaryot Cell. 2003;2:381–9.

    Article  CAS  PubMed  Google Scholar 

  13. Rubin-Bejerano I, Fraser I, Grisafi P, Fink G. Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci USA. 2003;100:11007–12.

    Article  CAS  PubMed  Google Scholar 

  14. Aguirre J, Ríos-Momberg M, Hewitt D, Hansberg W. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol. 2005;13:111–8.

    Article  CAS  PubMed  Google Scholar 

  15. González-Párraga P, Sánchez-Fresneda R, Martínez-Esparza M, Argüelles JC. Stress responses in yeasts: what rules apply? Arch Microbiol. 2008;189:293–6.

    Article  PubMed  Google Scholar 

  16. Chauhan N, Latge JP, Calderone R. Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus. Nat Rev Microbiol. 2006;4:435–44.

    Article  CAS  PubMed  Google Scholar 

  17. Cannon RD, Lamping E, Holmes AR, Niimi K, Tanabe K, Niimi M, et al. Candida albicans drug resistance—another way to cope with stress. Microbiology. 2007;153:3211–7.

    Article  CAS  PubMed  Google Scholar 

  18. Enjalbert B, MacCallum M, Odds FC, Brown AJP. Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. Infect Immun. 2007;75:2143–51.

    Article  CAS  PubMed  Google Scholar 

  19. Westwater C, Balish E, Schofield DA. Candida albicans-conditioned medium protects yeast cells from oxidative stress: a possible link between quorum sensing and oxidative stress resistance. Eukaryot Cell. 2005;4:1654–61.

    Article  CAS  PubMed  Google Scholar 

  20. Tosello ME, Biasoli MS, Luque AG, Magaró HM, Krapp AR. Oxidative stress response involving induction of protective enzymes in Candida dubliniensis. Med Mycol. 2007;45:535–40.

    Article  CAS  PubMed  Google Scholar 

  21. Cuéllar-Cruz M, Briones-Martin-Del-Campo M, Cañas-Villamar I, Montalvo-Arredondo J, Riego-Ruiz L, Castaño I, et al. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by the single catalase, Cta1p, and controlled by the transcription factors Yap1p, Skn7p, Msn2p and Msn4p. Eukaryot Cell. 2008;7:814–25.

    Article  PubMed  Google Scholar 

  22. Costa-De-Oliveira S, Pina-Vaz C, Gonçalves-Rodrigues A, Ludovico P. Candida krusei showed promoted resistance to oxidative stress. 15th European Congress on Clinical Microbiology and Infectious Diseases. 2005;Abstract Number:1135-204.

  23. Karatepe M. Simultaneous determination of ascorbic acid and free malondialdehyde in human serum by HPLC-UV. LC GC North America. 2004;22:362–5.

    CAS  Google Scholar 

  24. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.

    Article  CAS  PubMed  Google Scholar 

  25. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  26. Jamieson DJ, Stephen DWS, Terrière EC. Analysis of the adaptive oxidative stress response of Candida albicans. FEMS Microbiol Lett. 1996;138:83–8.

    Article  CAS  PubMed  Google Scholar 

  27. González-Párraga P, Hernández JA, Argüelles JC. Role of antioxidant enzymatic defenses against oxidative stress (H2O2) and the acquisition of oxidative tolerance in Candida albicans. Yeast. 2003;20:1161–9.

    Article  PubMed  Google Scholar 

  28. Enjalbert B, Nantel A, Whiteway M. Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell. 2003;14:1460–7.

    Article  CAS  PubMed  Google Scholar 

  29. Pedreño Y, González-Párraga P, Conesa S, Martínez-Esparza M, Aguinaga A, Hernández JA, et al. The cellular resistance against oxidative stress (H2O2) is independent of neutral trehalase (Ntc1p) activity in Candida albicans. FEMS Yeast Res. 2006;6:57–62.

    Article  PubMed  Google Scholar 

  30. Schorling SR, Kortinga HC, Froschb M, Mühlschlegel FA. The role of Candida dubliniensis in oral candidiasis in human immunodeficiency virus-infected individuals. Crit Rev Microbiol. 2000;26:59–68.

    Article  CAS  PubMed  Google Scholar 

  31. Moran G, Stokes C, Thewes S, Hube B, Coleman DC, Sullivan D. Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. Microbiology. 2004;150:3363–82.

    Article  CAS  PubMed  Google Scholar 

  32. Carrasco L, Ramos M, Galisteo R, Pisa D, Fresno M, Gonzalez MA. Isolation of Candida famata from a patient with acute zonal occult outer retinopathy. J Clin Microbiol. 2005;43:635–40.

    Article  PubMed  Google Scholar 

  33. Pfaller MA, Diekema DJ, Mendez M, Kibbler C, Erzsebet P, Chang SC, et al. Candida guilliermondii, an opportunistic fungal pathogen with decreased susceptibility to fluconazole: geographic and temporal trends from the ARTEMIS DISK antifungal surveillance program. J Clin Microbiol. 2006;44:3551–6.

    Article  CAS  PubMed  Google Scholar 

  34. Cuéllar-Cruz M, Castaño I, Arroyo-Helguera O, De Las Peñas A. Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata. Mem Inst Oswaldo Cruz. 2009;104:649–54.

    Article  PubMed  Google Scholar 

  35. Moran GP, Jabra-Rizk MA. 8th ASM Conference on Candida and Candidiasis: molecular tools provide insights into host-pathogen interactions. Mycopathologia. 2006;162:17–24.

    Article  PubMed  Google Scholar 

  36. Xiong J, Kang K, Liu L, Yoshida Y, Cooper KD, Ghannoum MA. Candida albicans and Candida krusei differentially induce human blood mononuclear cell interleukin-12 and gamma interferon production. Infect Immun. 2000;68:2464–9.

    Article  CAS  PubMed  Google Scholar 

  37. Kantarcioglu AS, Yucel A. Phospholipase and protease activity in clinical Candida isolates with reference to the sources of strains. Mycoses. 2002;45:160–5.

    Article  CAS  PubMed  Google Scholar 

  38. Davies JMS, Lowry CV, Davies KJA. Transient adaptations to oxidative stress in yeast. Arch Biochem Biophys. 1995;317:1–6.

    Article  CAS  PubMed  Google Scholar 

  39. Manfredini V, Martins VD, Peralba MCR, Benfato MS. Adaptative response to enhanced basal oxidative damage in sod mutants from Saccharomyces cerevisiae. Mol Cell Biochem. 2005;276:175–81.

    Article  CAS  PubMed  Google Scholar 

  40. Cabiscol E, Piulats E, Echave P, Herrero E, Ros J. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem. 2000;275:27393–8.

    CAS  PubMed  Google Scholar 

  41. Fekete A, Emri T, Gyetvai A. Development of oxidative stress tolerance resulted in reduced ability to undergo morphologic transitions and decreased pathogenicity in a t-butylhydroperoxide-tolerant mutant of Candida albicans. FEMS Yeast Res. 2007;7:834–47.

    Article  CAS  PubMed  Google Scholar 

  42. Cheng S, Clancy CJ, Zhang Z, Hao B, Wang W, Iczkowski KA, et al. Uncoupling of oxidative phosphorylation enables Candida albicans to resist killing by phagocytes and persist in tissue. Cell Microbiol. 2007;9:492–501.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Patrícia Valente for reading of the manuscript, M. H. Vainstein, T. I. E. Svidzinsky, S. H. Alves, and the Instituto Nacional de Controle de Qualidade em Saúde - INCQS for kindly providing strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mara Silveira Benfato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abegg, M.A., Alabarse, P.V.G., Casanova, A. et al. Response to Oxidative Stress in Eight Pathogenic Yeast Species of the Genus Candida . Mycopathologia 170, 11–20 (2010). https://doi.org/10.1007/s11046-010-9294-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-010-9294-5

Keywords

Navigation