Skip to main content

Advertisement

Log in

The Effect of Gentian Violet on Virulent Properties of Candida albicans

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of gentian violet (GV) on phospholipase activity, proteinase activity and germ tube formation rate of Candida albicans. Both 12 phospholipase-positive and 12 proteinase-positive C. albicans isolates with Pz values ≤0.89 were obtained. A yeast suspension (1–3 × 107 cfu/ml) of each isolate was prepared. After a brief exposure (60 min) to sub-therapeutic concentrations (0.5 or 2 μg/ml) of GV, Pz value of phospholipase, Pz value of proteinase and germ tube formation rate were determined. Phospholipase activity, proteinase activity and germ tube formation rate in two groups exposed to GV were significantly lower than those in the group unexposed (P < 0.05). The results of this study indicated that sub-therapeutic concentrations of GV may lead to reduction in phospholipase activity, proteinase activity and germ tube formation, and then may suppress virulence and pathogenicity of C. albicans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Meter F, Gallo JW, Garcia-Rojas G, et al. A study of oral candidiasis in HIV-positive patients. J Dent Hyg. 1994;68:30–4.

    PubMed  Google Scholar 

  2. Sobel JD, Faro S, Force RW, et al. Vulvovaginal candidiasis: epidemiologic, diagnostic, and therapeutic considerations. Am J Obstet Gynecol. 1998;178:203–11.

    Article  CAS  PubMed  Google Scholar 

  3. Fotos PG, Vincent SD, Hellstein JW. Oral candidiasis: clinical, historical, and therapeutic features of 100 cases. Oral Surg Med Oral Pathol. 1992;74:41–9.

    Article  CAS  Google Scholar 

  4. Kadir T, Uygun B, Akyuz S. Prevalence of Candida species in Turkish children: relationship between dietary intake and carriage. Arch Oral Biol. 2005;50:33–7.

    Article  PubMed  Google Scholar 

  5. Docampo R, Moreno SN. The metabolism and mode of action of gentian violet. Drug Metab Rev. 1990;22:161–78.

    Article  CAS  PubMed  Google Scholar 

  6. Simon C, Tabrizi SA. On the in vitro sensitivity of Candida albicans to nystatin, trichomycin, amphotericin B and gentian violet. Med Welt. 1967;37:2164–8.

    CAS  PubMed  Google Scholar 

  7. Tolba MK, Saleh AM. Studies on the mechanism of fungicidal action of crystal violet on mycelial felts of Fusarium culmorum. Arch Mikrobiol. 1963;47:201–6.

    Article  CAS  PubMed  Google Scholar 

  8. Barrett-Bee K, Hayes Y, Wilson RG. A comparison of phospholipase activity, cellular adherence and pathogenicity of yeasts. J Gen Microbiol. 1985;131:1217–21.

    CAS  PubMed  Google Scholar 

  9. Sanglard D, Hube B, Monod M, et al. A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun. 1997;65:3539–46.

    CAS  PubMed  Google Scholar 

  10. Hube B, Sanglard D, Odds FC, et al. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun. 1997;65:3529–38.

    CAS  PubMed  Google Scholar 

  11. Leidich SD, Ibrahim AS, Fu Y, et al. Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J Biol Chem. 1998;273:26078–86.

    Article  CAS  PubMed  Google Scholar 

  12. Bahn YS, Sundstrom P. CAP1, an adenylate cyclise associated protein gene, regulates bud-hypha transitions, filamentous growth and cyclic AMP levels and is required for virulence of Candida albicans. J Bacteriol. 2001;183:3211–23.

    Article  CAS  PubMed  Google Scholar 

  13. Rocha CR, Schroppel K, Harcus D, et al. Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell. 2001;12:3631–43.

    CAS  PubMed  Google Scholar 

  14. Price MF, Wilkinson ID, Gentry LO. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia. 1982;20:7–14.

    CAS  PubMed  Google Scholar 

  15. De Bernardis F, Chiani P, Ciccozzi M, et al. Elevated aspartyl proteinase secretion and experimental pathogenicity of Candida albicans isolates from oral cavities of subjects infected with human immunodeficiency virus. Infect Immun. 1996;64:466–71.

    PubMed  Google Scholar 

  16. Ellepola ANB, Samaranayake LP. The effect of brief exposure to sub-therapeutic concentrations of chlorhexidine gluconate on the germ tube formation of oral Candida albicans and its relationship to post-antifungal effect. Oral Dis. 2000;6:166–71.

    Article  CAS  PubMed  Google Scholar 

  17. McDonald PJ, Craig WA, Kunin CM. Persistent effect of antibiotics on Staphylococcus aureus after exposure for limited periods of time. J Infect Dis. 1977;135:217–23.

    CAS  PubMed  Google Scholar 

  18. Ghannoum MA, Filler SG, Ibrahim AS, et al. Modulation of interactions of Candida albicans and endothelial cells by fluconazole and amphotericin B. Antimicrob Agents Chemother. 1992;36:2239–44.

    CAS  PubMed  Google Scholar 

  19. Ombrella AM, Racca L, Ramos L. Proteases and phospholipases activities of Candida albicans isolated from vaginal secretions with different pH value. Rev Iberoam Micol. 2008;25:12–6.

    Article  PubMed  Google Scholar 

  20. Oksuz S, Sahin I, Yildirim M, Gulcan A, et al. Phospholipase and proteinase activities in different Candida species isolated from anatomically distinct sites of healthy adults. Jpn J Infect Dis. 2007;60:280–3.

    PubMed  Google Scholar 

  21. Ribeiro MA, Miranda AE, Gambale W, et al. Prevalence and exoenzyme secretion by Candida albicans isolates from oral and vaginal mucosas of HIV-infected women. Mycopathologia. 2004;157:255–61.

    Article  PubMed  Google Scholar 

  22. Gumru B, Kadir T, Uygun-Can B, et al. Distribution and phospholipase activity of Candida species in different denture stomatitis types. Mycopathologia. 2006;162:389–94.

    Article  PubMed  CAS  Google Scholar 

  23. Arai R, Sagita T, Nishikawa A. The anthracycline antitumor agents doxorubicin and daunorubicin reduce the activity of Candida albicans phospholipase B. Microbiol Immunol. 2004;48:665–7.

    CAS  PubMed  Google Scholar 

  24. Mayr A, Hinterberger G, Dierich MP, et al. Interaction of serotonin with Candida albicans selectively attenuates fungal virulence in vitro. Int J Antimicrob Agents. 2005;26:335–7.

    Article  CAS  PubMed  Google Scholar 

  25. Willis AM, Coulter WA, Fulton CR, et al. The influence of antifungal drugs on virulence properties of Candida albicans in patients with diabetes mellitus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91:317–21.

    Article  CAS  PubMed  Google Scholar 

  26. Anil S, Samaranayake LP. Brief exposure to antimycotics reduces the extracellular phospholipase activity of Candida albicans and Candida tropicalis. Chemotherapy. 2003;49:243–7.

    Article  CAS  PubMed  Google Scholar 

  27. Lyon JP, de Resende MA. Correlation between adhesion, enzyme production, and susceptibility to fluconazole in Candida albicans obtained from denture wearers. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102:632–8.

    Article  PubMed  Google Scholar 

  28. Darwazeh AM, Lamey PJ, MacFarlane TW, et al. The effect of exposure to chlorhexidine gluconate in vitro and in vivo on in vitro adhesion of Candida albicans to buccal epithelial cells from diabetic and non-diabetic subjects. J Oral Pathol Med. 1994;23:130–2.

    Article  CAS  PubMed  Google Scholar 

  29. Pizzo G, Giuliana D, Milici ME. Effect of antimicrobial mouthrinses on the in vitro adhesion of Candida albicans to human buccal epithelial cells. Clin Oral Investing. 2001;5:172–6.

    Article  CAS  Google Scholar 

  30. Kadir T, Gumru B, Uygun-Can B. Phospholipase activity of Candida albicans isolates from patients with denture stomatitis: the influence of chlorhexidine gluconate on phospholipase production. Arch Oral Biol. 2007;52:691–6.

    Article  CAS  PubMed  Google Scholar 

  31. Traboulsi RS, Mukherjee PK, Ghannoum MA. In vitro activity of inexpensive topical alternatives against Candida spp. isolated from the oral cavity of HIV-infected patients. Int J Antimicrob Agents. 2008;31:272–6.

    Article  CAS  PubMed  Google Scholar 

  32. Nyst MJ, Perriens JH, Kimputu L, Lumbila M, et al. Gentian violet, ketoconazole and nystatin in oropharyngeal and esophageal candidiasis in Zairian AIDS patients. Ann Soc Belg Med Trop. 1992;72:45–52.

    CAS  PubMed  Google Scholar 

  33. Franz R, Kelly SL, Lamb DC, et al. Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob Agents Chemother. 1998;42:3065–72.

    CAS  PubMed  Google Scholar 

  34. Lewis RE, Klepser ME, Pfaller MA. Update on clinical antifungal susceptibility testing for Candida species. Pharmacotherapy. 1998;18:509–15.

    CAS  PubMed  Google Scholar 

  35. Ruhnke M, Schmidt-Westhausen A, Morschhauser J. Development of simultaneous resistance to fluconazole in Candida albicans and Candida dubliniensis in a patient with AIDS. J Antimicrob Chemother. 2000;46:291–5.

    Article  CAS  PubMed  Google Scholar 

  36. Camacho DP, Gasparetto A, Svidzinski TI. The effect of chlorhexidine and gentian violet on the adherence of Candida spp. to urinary catheters. Mycopathologia. 2007;163:261–6.

    Article  CAS  PubMed  Google Scholar 

  37. White DJ, Johnson EM, Warnock DW. Management of persistent vulvo vaginal candidosis due to azole-resistant Candida glabrata. Genitourin Med. 1993;69:112–4.

    CAS  PubMed  Google Scholar 

  38. Maccato ML, Kaufman RH. Fungal vulvovaginitis. Curr Opin Obstet Gynecol. 1991;3:849–52.

    CAS  PubMed  Google Scholar 

  39. Samaranayake YH, Dassanayake RS, Jayatilake JA, et al. Phospholipase B enzyme expression is not associated with other virulence attributes in Candida albicans isolates from patients with human immunodeficiency virus infection. J Med Microbiol. 2005;54:583–93.

    Article  CAS  PubMed  Google Scholar 

  40. Banno Y, Yamada T, Nozawa Y. Secreted phospholipases of the dimorphic fungus, Candida albicans; separation of three enzymes and some biological properties. Sabouraudia. 1985;23:47–54.

    CAS  PubMed  Google Scholar 

  41. Mirbod F, Banno Y, Ghannoum MA, et al. Purification and characterization of lysophospholipase–transacylase (h-LPTA) from a highly virulent strain of Candida albicans. Biochim Biophys Acta. 1995;1257:181–8.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors, especially Su Ying, are very grateful to Prof. Michael McCullough at School of Dental Science of The University of Melbourne, Australia, for his many helpful discussions and good suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Ying.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ying, S., Qing, S. & Chunyang, L. The Effect of Gentian Violet on Virulent Properties of Candida albicans . Mycopathologia 169, 279–285 (2010). https://doi.org/10.1007/s11046-009-9258-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-009-9258-9

Keywords

Navigation