Skip to main content
Log in

Isolation, Characterization, and Production of Red Pigment from Cercospora piaropi a Biocontrol Agent for Waterhyacinth

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

A red pigment produced by a Mexican isolate of Cercospora piaropi (waterhyacinth pathogen) has been isolated and identified as cercosporin. The kinetic of cercosporin production in culture media during dark/light regimes was evaluated. When C. piaropi was cultivated in continuous light and potato dextrose broth culture, a maximum of cercosporin production was observed (72.59 mg/l). Despite other reports, C piaropi Mexican isolate produce cercosporin in dark conditions (25.70 mg/l). The results suggest that production of cercosporin in C. piaropi-waterhyacinth pathogenesis is an important factor to take into account in biocontrol strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Martyn RD. Waterhyacinth decline in Texas caused by Cercospora piaropi. J Aquat Plant Manag. 1985;23:29–32.

    Google Scholar 

  2. Charudattan R, Linda SB, Kluepfel M, Osman YA. Biocontrol efficacy of Cercospora rodmanii on waterhyacinth. Phytopathology. 1985;75:1263–9.

    Article  Google Scholar 

  3. Martínez JM, Gómez-Balandra MA. Integrated control of waterhyacinth in México by using insects and plant pathogens. Crop Prot. 2007;26:1234–8.

    Article  Google Scholar 

  4. Fajola AO. Cercosporin a phytotoxin from Cercospora species. Physiol Plant Pathol. 1978;13:157–64.

    Article  CAS  Google Scholar 

  5. Daub ME. Cercosporin, a photosensitizer toxin form Cercospora species. Phytopatology. 1982;72:370–4.

    Article  CAS  Google Scholar 

  6. Kuyama S, Tamura T. Cercosporin. A pigment of Cercospora kikuchii Matsumoto et Tamoyasu. I. Cultivation of fungus, isolation and purification of pigment. J Am Chem Soc. 1957;79:5725–6.

    Article  CAS  Google Scholar 

  7. Lousberg R, Chu J, Weiss W, Salmink CA, Arnone A, Merlini L, Nasini G. The structure of cercosporin, a naturally occurring quinone. Chem Commun. 1971;71:1463–4.

    Google Scholar 

  8. Ehrenshaft M, Upchurch RG. Isolation of light-enhanced cDNAs of Cercospora kikucchii. Appl Environ Microbiol. 1991;57(9):2671–6.

    CAS  PubMed  Google Scholar 

  9. Jenns AE, Daube ME, Upchurch RG. Regulation of cercosporin accumulation in culture media and temperature manipulation. Phytopathology. 1989;79:213–9.

    Article  CAS  Google Scholar 

  10. Daub ME, Herrero S, Kuang-Ren C. Photoactivated perylenequinone toxins in fungal pathogenesis of plants. FEMS Microbiol Lett. 2005;252:197–206.

    Article  CAS  PubMed  Google Scholar 

  11. Foote CS. Photosensitized oxidation and single oxygen: consequences in biological system. In: Pryor WA, editor. Free radicals in biology, vol. II. New York: Academic Press; 1976. p. 85–133.

    Google Scholar 

  12. Daub ME. Peroxidation of tobacco membrane lipids by the photosensitizing toxin, cercosporin. Plant Physiol. 1982;69:1361–4.

    Article  CAS  PubMed  Google Scholar 

  13. Daub ME, Briggs SP. Changes in tobacco cell membrane composition and structure caused by cercosporin. Plant Physiol. 1983;71:763–6.

    Article  CAS  PubMed  Google Scholar 

  14. Tessmann DJ, Charudattan R, Kistler HC, Rosskopf EN. A molecular characterization of Cercospora species pathogenic to waterhyacinth, emendation of C. piaropi. Mycologia. 2001;93(2):323–34.

    Article  CAS  Google Scholar 

  15. Martínez-Jiménez M, Charudattan R. Survey of evaluation of Mexican native fungi for potential biocontrol of waterhyacinth. J Aquat Plant Manag. 1998;36:145–8.

    Google Scholar 

  16. Dhingra O, Sinclair JB. Basic plant pathology methods. 2nd ed. Boca Raton: CRC Press; 1994. p. 434.

    Google Scholar 

  17. Trigos Á, Castellanos-Onorio O, Salinas A, Yáñez-Morales MJ. Ergosterol from Phytophthora drechsleri, a unusual metabolite of a member of this genus. Mycopathologia. 2005;159(3):469–71.

    Article  CAS  PubMed  Google Scholar 

  18. Trigos Á, Reyna S, Matamoros B. Macrophominol, a new diketopiperazine from cultures of Macrophomina phaseolina. Phytochemistry. 1995;40(6):1697.

    Article  CAS  Google Scholar 

  19. Mumma RO, Lukezic FL, Kelly MG. Cercosporin from Cercospora hayii. Phytochemistry. 1973;12:917–22.

    Article  CAS  Google Scholar 

  20. Daub ME, Hangarter RP. Light-induced production of singlet oxygen and superoxide by the fungal toxin cercosporin. Plant Physiol. 1983;73:855–7.

    Article  CAS  PubMed  Google Scholar 

  21. Upchurch RG, Walker DC, Rollins JA, Ehrenshaft M, Daub ME. Mutants of Cercospora kikuchii altered in cercosporin synthesis and pathogenicity. Appl Environ Microbiol. 1991;57(10):2940–5.

    CAS  PubMed  Google Scholar 

  22. Daub ME, Ehrenshaft M. The photoactivated Cercospora toxin cercosporin: contribution to plant disease and fundamental biology. Annu Rev Phytopathol. 2000;38:461–90.

    Article  CAS  PubMed  Google Scholar 

  23. Calpouzos L, Stalknech GF. Symptoms of Cercospora leaf spot of sugar beets influenced by light intensity. Phytopathology. 1967;57:799–800.

    Google Scholar 

  24. Almeida AMR, Piuga FF, Marin SRR, Binneck E, Sartori F, Costamilan LM, et al. Pathogenicity, molecular characterization, and cercosporin content of Brazilian isolates of Cercospora kikuchii. Fitopatol Bras. 2005;30:594–602.

    Google Scholar 

  25. Daub ME, Ehrenshaft M. The photoactivated Cercospora toxin cercosporin: contributions to plant disease and fundamental biology. Annu Rev Phytopathol. 2000;38:437–66.

    Google Scholar 

Download references

Acknowledgments

This work was financed by CONACyT México (grant SAGARPA-2002-C01-278). We thank Gabriel Arteaga for technical assistance. RMN spectral data were provided by Unidad de Servicios de Apoyo de Resolución Analítica, Universidad Veracruzana, México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maricela Martínez Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez Jiménez, M., Miranda Bahena, S., Espinoza, C. et al. Isolation, Characterization, and Production of Red Pigment from Cercospora piaropi a Biocontrol Agent for Waterhyacinth. Mycopathologia 169, 309–314 (2010). https://doi.org/10.1007/s11046-009-9257-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-009-9257-x

Keywords

Navigation