Skip to main content

Advertisement

Log in

Updating Corneofungimetry: A Bioassay Exploring Dermatomycoses and Antifungal Susceptibility

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Superficial dermatomycoses are frequent conditions in humans and animals. Specific treatment modalities have been designed using a variety of different antifungal compounds. The need for antifungal susceptibility testing (AST) has been growing steadily over the last two decades due to the extending number of newer antifungal agents. Objective inter- and intraindividual comparisons of their respective efficacies are nearly impossible to perform in vivo. Currently, a series of standardized AST methods and interpretative guidelines have been designed. However, their clinical relevance for dermatomycoses is not consistent. The corneofungimetry bioassay was designed to test comparatively a series of antifungals on pathogenic fungi growing on sheets of human stratum corneum. Computerized morphometric assessments bring numerical values allowing statistical comparisons. Variants of corneofungimetry address more specific aspects related to fungal cell adhesion, fungitoxicity and lipid-dependent fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Odds FC, Vranckx L, Woestenborghs F. Antifungal susceptibility testing of yeasts: evaluation of technical variables for test automation. Antimicrob Agents Chemother. 1995;39:2051–60.

    CAS  PubMed  Google Scholar 

  2. Llop C, Sala J, Riba MD, Guarro J. Antimicrobial susceptibility testing of dematiaceous filamentous fungi: effect of medium composition at different temperatures and times of reading. Mycopathologia. 1999;148:25–31.

    Article  CAS  PubMed  Google Scholar 

  3. Figueiredo VT, de Assis Santos D, Resende MA, Hamdan JS. Identification and in vitro antifungal susceptibility testing of 200 clinical isolates of Candida spp. responsible for fingernail infections. Mycopathologia. 2007;164:27–33.

    Article  CAS  PubMed  Google Scholar 

  4. Teixeira AB, Silva M, Lyra L, et al. Antifungal susceptibility and pathogenic potential of environmental isolated filamentous fungi compared with colonizing agents in immunocompromised patients. Mycopathologia. 2005;160:129–35.

    Article  CAS  PubMed  Google Scholar 

  5. Martinez-Rossi NM, Peres NT, Rossi A. Antifungal resistance mechanisms in dermatophytes. Mycopathologia. 2008;166:369–83.

    Article  PubMed  Google Scholar 

  6. Piérard GE, Vroome V, Borgers M, et al. New insights in the effects of topical ketoconazole. Curr Top Pharmacol. 2006;10:59–65.

    Google Scholar 

  7. Hardin TC, Najvar LK, Rizzo J, et al. Discrepancy between in vitro and in vivo antifungal activity of albendazole. J Med Vet Mycol. 1997;35:153–8.

    Article  CAS  PubMed  Google Scholar 

  8. Degreef H. Clinical forms of dermatophytosis (ringworm infection). Mycopathologia. 2008;166:257–65.

    Article  PubMed  Google Scholar 

  9. Knight AG. Culture of dermatophytes upon stratum corneum. J Invest Dermatol. 1972;59:427–31.

    Article  CAS  PubMed  Google Scholar 

  10. Knight AC. Human models for in vivo and in vitro assessment of topical antifungal agents. Br J Dermatol. 1973;89:509–14.

    Article  CAS  PubMed  Google Scholar 

  11. Faergemann J, Aly R, Maibach HI. Growth filament production of Pityrosporum orbiculare, P ovale on human stratum corneum in vitro. Acta Derm Venereol. 1983;63:388–92.

    CAS  PubMed  Google Scholar 

  12. Faergemann J. A new model for growth and filament production of Pityrosporum ovale (orbiculare) on human stratum corneum in vitro. J Invest Dermatol. 1989;92:117–9.

    Article  CAS  PubMed  Google Scholar 

  13. Rurangirwa A, Piérard-Franchimont C, Piérard GE. Culture of fungi on cyanoacrylate skin surface strippings–a quantitative bioassay for evaluating antifungal drugs. Clin Exp Dermatol. 1989;59:425–8.

    Article  Google Scholar 

  14. Osborne CS, Leitner I, Favre B, Ryder NS. Antifungal drug response in an in vitro model of dermatophyte nail infection. Med Mycol. 2004;42:159–63.

    Article  CAS  PubMed  Google Scholar 

  15. Droschner RA, Lopez-Garcia B, Massie J, et al. Innate immune defense of the nail unit by antimicrobial peptides. J Am Acad Dermatol. 2004;50:343–8.

    Article  Google Scholar 

  16. Jensen JM, Pfeiffer S, Akaki T, et al. Barrier function, epidermal differentiation, and human beta-defensin 2 expression in tinea corporis. J Invest Dermatol. 2007;127:1720–7.

    CAS  PubMed  Google Scholar 

  17. Kawai M, Yamazaki M, Tsuboi R, et al. Human beta-defensin-2, an antimicrobial peptide, was elevated in scales collected from tinea pedis patients. Int J Dermatol. 2006;45:1389–90.

    Article  PubMed  Google Scholar 

  18. Piérard GE, Arrese JE, Quatresooz P, Piérard-Franchimont C. Emerging antifungal agents for onychomycosis. Exp Opin Emerg Drugs. 2007;12:345–53.

    Article  Google Scholar 

  19. Piérard GE, Piérard-Franchimont C, Vroome V, et al. Established and emerging oral antifungals in dermatology. In: Walters HA, Roberts MS, editors. Dermatologic, cosmeceutic cosmetic development. New York: Publ Informa Healthcare; 2008. p. 283–96.

    Google Scholar 

  20. Braff MH, Bardan A, Nizet V, Gallo RL. Cutaneous defense mechanisms by antimicrobial peptides. J Invest Dermatol. 2005;125:9–13.

    Article  CAS  PubMed  Google Scholar 

  21. Izadpanah A, Gallo RL. Antimicrobial peptides. J Am Acad Dermatol. 2005;52:381–90.

    Article  PubMed  Google Scholar 

  22. Yamasaki K, Gallo RL. Antimicrobial peptides in human skin disease. Eur J Dermatol. 2008;18:11–21.

    CAS  PubMed  Google Scholar 

  23. Harder J, Meyer-Hoffert U, Wehkamp K, et al. Differential gene induction of human β-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. J Invest Dermatol. 2004;123:522–9.

    Article  CAS  PubMed  Google Scholar 

  24. Baroni A, Orlando M, Donnarumma G, et al. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. Arch Dermatol Res. 2006;297:280–8.

    Article  CAS  PubMed  Google Scholar 

  25. Bowdish DM, Davidson DJ, Hancock RE. Immunomodulatory properties of defensins and cathelicidins. Curr Top Microbiol Immunol. 2006;306:27–66.

    Article  CAS  PubMed  Google Scholar 

  26. Kanzler H, Barrat FJ, Hessel EM, Coffman RL. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med. 2007;13:552–9.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng Y, Niyonsaba F, Ushio H, et al. Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human α-defensins from neutrophils. Br J Dermatol. 2007;157:1124–31.

    Article  CAS  PubMed  Google Scholar 

  28. Speth C, Rambach G, Würzner R, Lass-Flörl C. Complement and fungal pathogens: an update. Mycoses. 2008;51:477–96.

    Article  CAS  PubMed  Google Scholar 

  29. Sawaki K, Mizukawa N, Yamaai T, Fukunaga J, Sugahara T. Immunohistochemical study on expression of alpha-defensin and beta-defensin-2 in human buccal epithelia with candidiasis. Oral Dis. 2002;8:37–41.

    Article  CAS  PubMed  Google Scholar 

  30. Abiko Y, Jinbu Y, Noguchi T, et al. Upregulation of human beta-defensin 2 peptide expression in oral lichen planus, leukoplakia and candidiasis, an immunohistochemical study. Pathol Res Pract. 2002;198:537–42.

    Article  CAS  PubMed  Google Scholar 

  31. Hubert P, Herman L, Maillard C, et al. Defensins induce the recruitment of dendritic cells in cervical human papillomavirus-associated (pre)neoplastic lesions formed in vitro and transplanted in vivo. FASEB J. 2007;21:2765–75.

    Article  CAS  PubMed  Google Scholar 

  32. Pernet I, Reymermier C, Guezennec A, et al. An optimized method for intensive screening of molecules that stimulate β-defensins 2 or 3 (hBD2 or hBD3) expression in cultured normal human keratinocytes. Int J Cosmet Sci. 2005;27:161–70.

    Article  CAS  PubMed  Google Scholar 

  33. Roeder A, Kirschning CJ, Rupec RA, et al. Toll-like receptors as key mediators in innate antifungal immunity. Med Mycol. 2004;42:485–98.

    Article  CAS  PubMed  Google Scholar 

  34. Donnarumma G, Paoletti I, Buommino E, et al. Malassezia furfur induces the expression of β-defensins-2 in human keratinocytes in a protein kinase C-dependent manner. Arch Dermatol Res. 2004;295:474–81.

    Article  CAS  PubMed  Google Scholar 

  35. Quatresooz P, Piérard-Franchimont C, Arrese JE, Piérard GE. Clinicopathologic presentations of dermatomycoses in cancer patients. J Eur Acad Dermatol Venereol. 2008;22:407–17.

    Article  Google Scholar 

  36. Piérard GE, Quatresooz P, Arrese JE. Spotlight on nail histomycology. Dermatol Clin. 2006;24:371–4.

    Article  PubMed  CAS  Google Scholar 

  37. Paquet P, Piérard-Franchimont C, Piérard GE, Quatresooz P. Skin fungal biocontamination and the skin hydrogel pad test. Arch Dermatol Res. 2008;300:167–71.

    Article  CAS  PubMed  Google Scholar 

  38. Piérard GE. Seborrheic dermatitis today, gone tomorrow? The link between the bioscene and treatment. Dermatology. 2003;206:233–40.

    Article  CAS  Google Scholar 

  39. Piérard GE, Xhauflaire-Uhoda E, Piérard-Franchimont C. The key role of corneocytes in pityrosporoses. Dermatology. 2006;212:23–6.

    Article  PubMed  Google Scholar 

  40. Arrese JE, Piérard GE. Treatment failures and relapses in onychomycosis: a stubborn clinical problem. Dermatology. 2003;207:255–60.

    Article  PubMed  Google Scholar 

  41. Piérard GE. Spores, sporodochia and fomites in onychomycosis. Dermatology. 2006;213:169–72.

    Article  PubMed  Google Scholar 

  42. Piérard GE, Piérard-Franchimont C, Quatresooz P. Fungal thigmotropism in onychomycosis and in a clear hydrogel pad model. Dermatology. 2007;215:107–13.

    Article  PubMed  Google Scholar 

  43. National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. NCCLS Document M27-A2. PA, USA, Wayne, 2002.

  44. National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of conidium forming filamentous fungi. Approved standard M38-A. PA, USA, Wayne, 2002.

  45. National Committee for Clinical Laboratory Standards. Methods for antifungal disk diffusion susceptibility testing of yeasts; approved guideline M44-A. Wayne, PA: National Committee for Clinical Laboratory Standards; 2004.

  46. Swinne D, Watelle M, Van der Flaes M, Nolard N. In vitro activities of voriconazole (UK-109, 496), fluconazole, itraconazole and amphotericin B against 132 non-albicans bloodstream yeast isolates (CANARI study). Mycoses. 2004;47:177–83.

    Article  CAS  PubMed  Google Scholar 

  47. Carrillo-Munoz AJ, Quindos G, Ruesga M, et al. In vitro antifungal susceptibility testing of filamentous fungi with Sensititre Yeast One™. Mycoses. 2006;49:293–7.

    Article  CAS  PubMed  Google Scholar 

  48. Valve-Silva LA, Buchta V. Antifungal susceptibility testing by flow cytometry: is it the future? Mycoses. 2006;49:261–73.

    Article  Google Scholar 

  49. Arikan S. Current status of antifungal susceptibility testing methods. Med Mycol. 2007;45:569–87.

    Article  CAS  PubMed  Google Scholar 

  50. Singh J, Zaman M, Gupta AK. Evaluation of microdilution and disk diffusion methods for antifungal susceptibility testing of dermatophytes. Med Mycol. 2007;45:595–602.

    Article  CAS  PubMed  Google Scholar 

  51. Ergin A, Arikan S. Comparison of microdilution and disc diffusion methods in assessing the in vitro activity of fluconazole and Melaleuca alternifolia (tea tree) oil against vaginal Candida isolates. J Chemother. 2002;14:465–72.

    CAS  PubMed  Google Scholar 

  52. Whiting DA, Bisset EA. The investigation of superficial fungal infections by skin surface biopsy. Br J Dermatol. 1974;91:57–65.

    Article  CAS  PubMed  Google Scholar 

  53. Knudsen EA. The areal extent of dermatophyte infection. Br J Dermatol. 1975;92:413–6.

    Article  CAS  PubMed  Google Scholar 

  54. Piérard-Franchimont C, Piérard GE. Skin surface stripping in diagnosing and monitoring inflammatory, xerotic and neoplastic diseases. Pediatr Dermatol. 1985;2:180–4.

    Article  PubMed  Google Scholar 

  55. Naka W, Hanyaku H, Tajima S, et al. Application of neutral red staining for evaluation of the viability of dermatophytes and Candida in human skin scales. J Med Vet Mycol. 1994;32:31–5.

    Article  CAS  PubMed  Google Scholar 

  56. Piérard GE, Rurangirwa A, Piérard-Franchimont C. Bioavailability of fluconazole and ketoconazole in human stratum corneum and oral mucosa. Clin Exp Dermatol. 1991;16:167–71.

    Article  Google Scholar 

  57. Aljabre SHM, Richardson MD, Scott EM, Shakland GS. Germination of Trichophyton mentagrophytes on human stratum corneum in vitro. J Med Vet Mycol. 1992;30:145–52.

    Article  CAS  PubMed  Google Scholar 

  58. Piérard GE, Piérard-Franchimont C, Arrese Estrada J. Comparative study of the activity and lingering effect of topical antifungals. Skin Pharmacol. 1993;6:208–14.

    Article  PubMed  Google Scholar 

  59. Arrese JE, Schrooten P, De Doncker P. et al. Fungal cultures on cyanoacrylate skin surface strippings as a dose-finding method for topical antifungals. A placebo-controlled study with itraconazole 0.25% and 0.50% cream. J Med Vet Mycol. 1995;33:127–30.

    Article  CAS  PubMed  Google Scholar 

  60. Arrese JE, Fogouang L, Piérard-Franchimont C, Piérard GE. Euclidean and fractal computer-assisted corneofungimetry. A comparison of 2% ketoconazole and 1% terbinafine topical formulations. Dermatology. 2002;204:222–7.

    Article  CAS  PubMed  Google Scholar 

  61. Piérard GE, Arrese JE, De Doncker P. Antifungal activity of itraconazole and terbinafine in human stratum corneum: a comparative study. J Am Acad Dermatol. 1995;32:429–35.

    Article  PubMed  Google Scholar 

  62. Piérard GE, Piérard-Franchimont C, Arrese JE. Povidone-iodine wash solutions in the prevention of superficial fungal infections : predictive evaluation using the corneofungimetry bioassay. Eur J Clin Pharmacol. 1997;53:101–4.

    Article  PubMed  Google Scholar 

  63. Arrese JE, De Doncker P, Odds FC, Piérard GE. Reduction in the growth of non-dermatophyte moulds by itraconazole: evaluation by corneofungimetry assay. Mycoses. 1998;41:461–5.

    Article  CAS  PubMed  Google Scholar 

  64. Piérard-Franchimont C, Ausma J, Wouters L, et al. Activity of the triazole antifungal R12663 as assessed by corneofungimetry. Skin Pharmacol Physiol. 2006;19:50–6.

    Article  PubMed  CAS  Google Scholar 

  65. Piérard-Franchimont C, Vroome V, Cauwenbergh G, Piérard GE. Corneofungimetry bioassay on Malassezia spp. under ketoconazole and desonide influences. Skin Pharmacol Physiol. 2005;18:98–102.

    Article  PubMed  CAS  Google Scholar 

  66. Rurangirwa A, Piérard-Franchimont C, Piérard GE. Growth of Candida albicans on the stratum corneum of diabetic and non-diabetic patients. Mycoses. 1990;33:253–5.

    CAS  PubMed  Google Scholar 

  67. Smijs TGM, Bouwstra JA, Schuitmakers HJ, Talebi M, Pavel S. A novel ex vivo skin model to study the susceptibility of the dermatophyte Trichophyton rubrum to photodynamic treatment in different growth phases. J Antimicrob Chemother. 2007;59:433–40.

    Article  CAS  PubMed  Google Scholar 

  68. Dorocka-Bobkowska B, Konopka K, Düzgünes N. Influence of antifungal polyenes on the adhesion of Candida albicans and Candida glabrata to human epithelial cells in vitro. Arch Oral Biol. 2003;48:805–14.

    Article  CAS  PubMed  Google Scholar 

  69. He XY, Meurman JH, Kari K, et al. In vitro adhesion of Candida species to denture base materials. Mycoses. 2006;49:80–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the “Fonds d’Investissement de la Recherche Scientifique” of the University Hospital of Liège. No other sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this review. The authors appreciate the excellent secretarial assistance of Mrs. Ida Leclercq and Marie Pugliese.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérald E. Piérard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piérard, G.E., Piérard-Franchimont, C. & Quatresooz, P. Updating Corneofungimetry: A Bioassay Exploring Dermatomycoses and Antifungal Susceptibility. Mycopathologia 169, 27–35 (2010). https://doi.org/10.1007/s11046-009-9227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-009-9227-3

Keywords

Navigation