Skip to main content
Log in

Using Human Sera to Identify a 52-kDa Exoantigen of Penicillium chrysogenum and Implications of Polyphasic Taxonomy of Anamorphic Ascomycetes in the Study of Antigenic Proteins

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

We are interested in isolating and identifying antigenic fungal proteins from species that grow on damp building materials. The indoor clade of Penicillium chrysogenum, the so-called Fleming clade, is the most common species of Penicillium on moldy building materials. We have identified a 52-kDa marker protein for the indoor clade of P. chrysogenum not present in a taxonomically diverse selection of fungi. It is found in high concentrations in protein extracted from the fungus grown on paper-faced gypsum wallboard. During this process, we illuminated the variability in response to patient sera and of strains of the fungus collected over a wide geographic area. From a collection of sera from all over the USA, 25 of the 48 patients reacted to the 52-kDa protein from this prescreened collection of sera. Most strain/antibody combinations had proportionate ELISA response associated with the presence of the target. However, approximately 25% of the strain/patient serum combinations included people who responded to many common allergens from the Penicillia. All the P. chrysogenum strains tested produced the target protein. However, there was considerable variability in patient IgG response to 32-, 30-, and 18-kDa antigens and in their production by the various clade 4 strains. The target protein was not found in spores or culture extracts of a wide selection of relevant fungi. It appears that the previous studies have been conducted on strains of the fungus from the three clades not those associated with the built environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fisk WJ, Lei-Gomez Q, Mendell MJ. Meta-analyses of the associations of respiratory health effects with dampness and mold in homes. Indoor Air. 2007;17:284–96.

    Article  CAS  PubMed  Google Scholar 

  2. NAS. Clearing the air: asthma and indoor air exposures. National Academy of Sciences Institute of Medicine, Division of Health Promotion and Disease Prevention. Washington, DC: National Academy Press; 2000.

    Google Scholar 

  3. NAS. Damp indoor spaces and health. Institute of medicine. Washington: National Academies Press; 2004.

    Google Scholar 

  4. Health Canada. Fungal contamination in public buildings: health effects and investigation methods. Ottawa: Health Canada; 2004.

    Google Scholar 

  5. Miller JD, Dugandzic R, Frescura AM, Salares V. Indoor- and outdoor-derived contaminants in urban and rural homes in Ottawa, Ontario, Canada. J Air Waste Manag Assoc. 2007;57:297–302.

    CAS  PubMed  Google Scholar 

  6. Dales R, Miller J. Residential fungal contamination and health: microbial cohabitants as covariates. Environ Health Perspect. 1999;107 (suppl):481–3.

    Google Scholar 

  7. Anon. Moldy houses: why they are & why we care. Ottawa: Canada Mortgage & Housing Corporation; 1999. p. 66.

    Google Scholar 

  8. Lawton MD, Dales RE, White J. The influence of house characteristics in a Canadian community on microbiological contamination. Indoor Air. 1998;8:2–11.

    Article  CAS  Google Scholar 

  9. Dekker C, Dales R, Bartlett S, Zwanenburg H. Childhood asthma and the indoor environment. Chest. 1991;100:222–6.

    Article  Google Scholar 

  10. Mudarri D, Fisk WJ. Public health and economic impact of dampness and mold. Indoor Air. 2007;17:226–35.

    Article  CAS  PubMed  Google Scholar 

  11. Jaakkola MS, Laitinen S, Piipari R, Uitti J, Nordman H, Haapala A-M, et al. Immunoglobulin G antibodies against indoor dampness-related microbes and adult-onset asthma: a population-based incident case-control study. Clin Exp Immunol. 2002;129:107–12.

    Article  CAS  PubMed  Google Scholar 

  12. Abramson M, Kutin JJ, Raven J, Lanigan A, Czarny D, Walters EH. Risk factors for asthma among young adults in Melbourne, Australia. Respirology. 1996;1:291–7.

    Article  CAS  PubMed  Google Scholar 

  13. Zureik M, Neukirch C, Leynaert B, Liard R, Bousquet J, Neukirch F. Sensitisation to airborne molds and severity of asthma: cross sectional study from European Community respiratory health survey. Br Med J. 2002;325:411–4.

    Article  Google Scholar 

  14. Xu J, Jensen JT, Liang Y, Belisle D, Miller JD. The biology and immogenicity of a 34 kDa antigen of Stachybotrys chartarum sensu lato. Int Biodeterior Biodegrad. 2007;60:308–18.

    Article  CAS  Google Scholar 

  15. Xu J, Liang Y, Belisle D, Miller JD. Characterization of monoclonal antibodies to an antigenic protein from Stachybotrys chartarum and its measurement in house dust. J Immunol Methods. 2008;332:121–8.

    Article  CAS  PubMed  Google Scholar 

  16. Barnes C, Portnoy J, Sever M, Arbes S Jr, Vaughn M, Zeldin DC. Comparison of enzyme immunoassay–based assays for environmental Alternaria alternata. Ann Allergy Asthma Immunol. 2006;97:350–6.

    CAS  PubMed  Google Scholar 

  17. Schmechel D, Green BJ, Blachere FM, Janotka E, Beezhold DH. Analytical bias of cross-reactive polyclonal antibodies for environmental immunoassays of Alternaria alternata. J Allergy Clin Immunol. 2008;121:763–8.

    Article  CAS  PubMed  Google Scholar 

  18. Miller JD, Rand TG, McGregor H, Solomon J, Yang C. Mold ecology: recovery of fungi from certain moldy building materials. In: Prezant B, Weekes D, Miller JD, editors. Recognition, evaluation and control of indoor mold. Fairfax: American Industrial Hygiene Association; 2008. p. 43–51.

    Google Scholar 

  19. Pangallo D, Šimonovičová A, Chovanová K, Ferianc P. Wooden art objects and the museum environment: identification and biodegradative characteristics of isolated microflora. Lett Appl Microbiol. 2007;45:87–94.

    Article  CAS  PubMed  Google Scholar 

  20. Milanesia C, Baldib F, Vignania R, Ciampolinia F, Faleria C, Crestia M. Fungal deterioration of medieval wall fresco determined by analysing small fragments containing copper. Int Biodeterior Biodegrad. 2006;57:7–13.

    Article  CAS  Google Scholar 

  21. Abruscia C, Marquinaa D, Del Amob A, Corralesc T, Catalinac F. A viscometric study of the biodegradation of photographic gelatin by fungi isolated from cinematographic films. Int Biodeterior Biodegrad. 2006;58:142–9.

    Article  CAS  Google Scholar 

  22. Fabbri AA, Ricelli A, Brasini S, Fanelli C. Effect of different antifungals on the control of paper biodeterioration caused by fungi. Int Biodeterior Biodegrad. 1997;39:61–5.

    Article  CAS  Google Scholar 

  23. Flannigan B, Samson R, Miller JD, editors. Microorganisms in home and indoor work environments. London: Taylor & Francis; 2001. p. 101–28.

    Google Scholar 

  24. Clausen CA, Yang VW. Azole-based antimycotic agents inhibit mold on unseasoned pine. Int Biodeterior Biodegrad. 2005;55:99–102.

    Article  CAS  Google Scholar 

  25. Lugauskas A, Prosychevas I, Levinskaitė L, Jaskelevičius B. Physical and chemical aspects of long-term biodeterioration of some polymers and composites. Biodeterioration of Polymers. Environ Toxicol. 2004;19:318–28.

    Article  CAS  PubMed  Google Scholar 

  26. Leitão AL, Duarte MP, Santos Oliveira J. Degradation of phenol by a halotolerant strain of Penicillium chrysogenum. Int Biodeterior Biodegrad. 2007;59:220–5.

    Article  CAS  Google Scholar 

  27. Frisvad JC, Samson RA. Polyphasic taxonomy of Penicilliuim subgenus Penicillium a guide to identification of food and airborne terverticillate Penicillia and their mycotoxins. Penicillium subgenus Penicillium: new taxonomic schemes, mycotoxins and other extrolites. Stud Mycol. 2004;49:1–173.

    Article  Google Scholar 

  28. de la Campa R, Seifert K, Miller JD. Toxins from strains of Penicillium chrysogenum isolated from buildings and other sources. Mycopathologia. 2007;163:161–8.

    Article  CAS  Google Scholar 

  29. Scott J, Untereiner WA, Wong B, Straus NA, Malloch D. Genotypic variation in Penicillium chrysogenum from indoor environments. Mycologia. 2004;96:1095–105.

    Article  CAS  Google Scholar 

  30. Braumann I, van den Berg M, Kempken F. Repeat induced point mutation in two asexual fungi, Aspergillus niger and Penicillium chrysogenum. Curr Genet. 2008;53:287–97.

    Article  CAS  PubMed  Google Scholar 

  31. Cooley JD, Wong WC, Jumper CA, Straus DC. Correlation between the prevalence of certain fungi and sick building syndrome. Occup Environ Med. 1998;55:579–84.

    Article  CAS  PubMed  Google Scholar 

  32. Kolossa-Gehring M, Becker K, Conrad A, Ludecke A, Riedel S, Seiwert M, et al. German Environmental Survey for Children (GerES IV)–First results. Int J Hyg Environ Health. 2007;210:535–40.

    Article  CAS  PubMed  Google Scholar 

  33. Rydjord B, Martonw JH, Strǿmsnesw H, Granum B, Bollez R, Nystad W, et al. Mold-specific immunoglobulin antibodies quantified by flow cytometry reflect mold exposure in Norwegian children. Clin Exp Allergy. 2008;38:430–7.

    Article  CAS  PubMed  Google Scholar 

  34. Chung YJ, Coates NH, Viana ME, Copeland L, Vesper SJ, Selgrade MK, et al. Dose-dependent allergic responses to an extract of Penicillium chrysogenum in BALB/c mice. Toxicology. 2005;209:77–89.

    Article  CAS  PubMed  Google Scholar 

  35. Cooley JD, Wong WC, Jumper CA, Hutson JC, Williams HJ, Schwab CJ, et al. An animal model for allergic penicilliosis induced by the intranasal instillation of viable Penicillium chrysogenum conidia. Thorax. 2000;55:489–96.

    Article  CAS  PubMed  Google Scholar 

  36. Shen H-D, Lin W-L, Tsai J-J, Liaw S-F, Han S-H. Allergenic components in three different species of Penicillium: Cross-reactivity among major allergens. Clin Exp Allergy. 1996;26:445–51.

    Google Scholar 

  37. Samson RA, Seifert KA, Kuijpers AFA, Houbraken JAMP, Frisvad JC. Phylogenetic analysis of Penicillium subgenus Penicillium using partial β-tubulin sequences. Stud Mycol. 2004;49:175–200.

    Google Scholar 

  38. Pöll V, Denk U, Shen HD, Panzani RC, Dissertori O, Lackner P, et al. The vacuolar serine protease, a cross-reactive allergen from Cladosporium herbarum. Mol Immunol. 2009;46:1360–73.

    Article  PubMed  CAS  Google Scholar 

  39. Chou H, Tam MF, Lee SS, Tai HY, Chang CY, Chou CT, et al. A vacuolar serine protease (Rho m 2) Is a major allergen of Rhodotorula mucilaginosa and belongs to a class of highly conserved pan-fungal allergens. Int Arch Allergy Immunol. 2005;138(2):134–41.

    Article  CAS  PubMed  Google Scholar 

  40. Lin WL, Chou H, Tam MF, Huang MH, Han SH, Shen HD. Production and characterization of monoclonal antibodies to serine proteinase allergens in Penicillium and Aspergillus species. Clin Exp Allergy. 2000;30:1653–62.

    Article  CAS  PubMed  Google Scholar 

  41. http://www.allergen.org/Allergen.aspx. Accessed May 2009.

  42. Halsey JF, Jensen JT, Miller JD. Immunological responses to Stachybotrys chartarum. Allergy Clin Immunol. 2000;107:s317.

    Google Scholar 

  43. Murad YM, Lewis CW, Anderson JG, Smith JE. Preparation of fungal spores for mycotoxin detection. Int Biodeterior Biodegrad. 1993;32:228–9.

    Article  Google Scholar 

  44. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    Article  CAS  PubMed  Google Scholar 

  45. Wilson AM. Isolation and purification of fungal proteins antigenic in humans from indoor strains of Penicillium chrysogenum. MSc Thesis. Carleton University, Ottawa 2007.

  46. Day JH. Allergic respiratory responses to fungi. In: Howard DH, Miller JD (eds) The Mycota 1996; VI: 173–192.

  47. Feinberg SM. Allergy in Practice. 2nd ed. Chicago: The Year Book Publishers; 1946.

    Google Scholar 

  48. Simon-Nobbe B, Denk U, Pöll V, Rid R, Breitenbach M. The spectrum of fungal allergy. Int Arch Allergy Immunol. 2008;145:58–86.

    Article  PubMed  Google Scholar 

  49. Bisht V, Kukreja N, Singh BP. Current status of fungal allergens. Indian J Allergy Asthma Immunol. 2003;17:9–19.

    Google Scholar 

  50. Frew AJ. Mold allergy: some progress made, more needed. J Allergy Clin Immunol. 2004;113:216–8.

    Article  CAS  PubMed  Google Scholar 

  51. Shen HD, Lin WL, Tam MF, Wang SR, Tzean SS, Huang MH, et al. Characterization of allergens from Penicillium oxalicum and P. notatum by immunoblotting and N-terminal amino acid sequence analysis. Clin Exp Allergy. 1999;29:642–51.

    Article  CAS  PubMed  Google Scholar 

  52. Rand TG, Miller JD. Immunohistochemical and immunocytochemical detection of SchS34 antigen in Stachybotrys chartarum spores and spore impacted mouse lungs. Mycopathologia. 2008;165:73–80.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao W. Studies on human antigens of Aspergillus versicolor. MSc Thesis. Carleton, University, Ottawa 2006.

  54. Faquim-Mauro EL, Jacysyn JF, Macedo MS. Anaphylactic and non-anaphylactic murine IgG1 differ in their ability to bind to mast cells: relevance of proper glycosylation of the molecule. Immunobiology. 2003;207:169–77.

    Article  CAS  PubMed  Google Scholar 

  55. Nissen D, Petersen LJ, Esch R, Svejgaard E, Skov PS, Poulsen LK, et al. IgE-sensitization to cellular and culture filtrates of fungal extracts in patients with atopic dermatitis. Ann Allergy Asthma Immunol. 1998;81(3):247–55.

    Article  CAS  PubMed  Google Scholar 

  56. Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 6th revised ed. Philadelphia: Saunders Elsevier; 2007. p. 566.

  57. Luo W, Wilson AM, Miller JD. Characterization of a 52 kDa exoantigen of Penicllium chrysogenum and monoclonal antibodies suitable for its detection. Mycopathologia (in press).

Download references

Acknowledgments

We are grateful for advice from Dr. Jiangping Xu and the expert technical help of Don Belisle, Natacha Provost, and Shari Levac. Useful suggestions from an unknown reviewer are also appreciated. This work was supported by an NSERC IRC to JDM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, A.M., Luo, W. & David Miller, J. Using Human Sera to Identify a 52-kDa Exoantigen of Penicillium chrysogenum and Implications of Polyphasic Taxonomy of Anamorphic Ascomycetes in the Study of Antigenic Proteins. Mycopathologia 168, 213–226 (2009). https://doi.org/10.1007/s11046-009-9222-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-009-9222-8

Keywords

Navigation