Mycopathologia

, 168:11 | Cite as

Characterization of Penicillium Species by Ribosomal DNA Sequencing and BOX, ERIC and REP-PCR Analysis

Article

Abstract

The genus Penicillium is one of the largest and widely distributed fungal genera described to date. As a result, its taxonomic classification and species discrimination within this genus has become complicated. In this study, 52 isolates that belonged to the Penicillum genus and other related genera were characterized using two DNA-based methods: (i) analysis of the nucleotide sequences of internal transcribed spacers in ribosomal DNA and (ii) analysis of DNA fingerprints that were generated by polymerase chain reactions with specific primers for enterobacterial repetitive intergenic consensus (ERIC) and repetitive extragenic palindromic (REP) sequences, and BOX elements. Using both methods, Penicillium species were discriminated from other fungal genera. Furthermore, Penicillium species that include strains which are used as biocontrol agents, such as P. glabrum, P. purpurogenum, and P. oxalicum, could be distinguished from other Penicillium species using these techniques. Based on our findings, we propose that a polyphasic approach that includes analysis of the nucleotide sequences of ribosomal DNA and detecting the presence of highly conserved, repeated nucleotide sequences can be used to determine the genetic relationships between different Penicillium species. Furthermore, we propose that our results can be used as a start point to develop a strategy to monitor the environmental presence of particular strains of Penicillium species when they are used as biocontrol agents.

Keywords

Biocontrol DNA fingerprinting Fungal monitoring Internal transcribed spacers rep-PCR 

References

  1. 1.
    Thom C. The Penicillia. London: Baillière Tindall and Cox; 1930.Google Scholar
  2. 2.
    Raper KB, Thom C. A manual of the Penicillia. Baltimore, USA: Williams & Wilkins Co.; 1949.Google Scholar
  3. 3.
    Seifert KA, Levesque CA. Phylogeny and molecular diagnosis of mycotoxigenic fungi. Eur J Plant Pathol. 2004;110:449–71. doi:10.1023/B:EJPP.0000032385.41877.7a.CrossRefGoogle Scholar
  4. 4.
    Pitt JI. The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. London: Academic Press; 1979.Google Scholar
  5. 5.
    Ramirez C. Manual and atlas of the Penicillia. Amsterdam, The Netherlands: Elsevier Biomedical Press; 1982.Google Scholar
  6. 6.
    Meyer W, Koch A, Niemann C, Beyermann B, Epplen JT, Borner T. Differentiation of species and strains among filamentous fungi by DNA fingerprinting. Curr Gen. 1991;19:239–42. doi:10.1007/BF00336493.CrossRefGoogle Scholar
  7. 7.
    Onions AHS, Bridge PD, Paterson RR. Problems and prospects for the taxonomy of Penicillium. Microbiol Sci. 1984;1:185–9.PubMedGoogle Scholar
  8. 8.
    Frisvad JC, Samson RA. Polyphasic taxonomy of Penicillium subgenus Penicillium. A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Stud Mycol. 2004;49:1–173. doi:10.1016/S0922-5382(04)80002-3.CrossRefGoogle Scholar
  9. 9.
    Smedsgaard J, Nielsen J. Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot. 2005;56:273–86. doi:10.1093/jxb/eri068.PubMedCrossRefGoogle Scholar
  10. 10.
    Pianzzola MJ, Moscatelli M, Vero S. Characterization of Penicillium isolates associated with blue mold on apple in Uruguay. Plant Dis. 2004;88:23–8. doi:10.1094/PDIS.2004.88.1.23.CrossRefGoogle Scholar
  11. 11.
    Paterson RRM, Venancio A, Lima N. Solutions to Penicillium taxonomy crucial to mycotoxin research and health. Res Microbiol. 2004;155:507–13. doi:10.1016/j.resmic.2004.04.001.PubMedCrossRefGoogle Scholar
  12. 12.
    Cruickshank RH, Pitt JI. Identification of species in Penicillium Subgenus Penicillium by enzyme electrophoresis. Mycologia. 1987;79:614–20. doi:10.2307/3807602.CrossRefGoogle Scholar
  13. 13.
    Fierro F, Barredo JL, Diez B, Gutierrez S, Fernandez FJ, Martin FJ. The Penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Nat Acad Sci USA. 1995;92:6200–4. doi:10.1073/pnas.92.13.6200.PubMedCrossRefGoogle Scholar
  14. 14.
    Dupont J, Magnin S, Marti A, Brousse M. Molecular tools for identification of Penicillium starter cultures used in the food industry. Int J Food Microbiol. 1999;49:109–18. doi:10.1016/S0168-1605(99)00055-0.PubMedCrossRefGoogle Scholar
  15. 15.
    Samson RA, Seifert KA, Kuijpers AFA, Houbraken JAMP, Frisvad JC. Phylogentic analysis of Penicillium subgenus Penicillium using partial β-tubulin sequences. Stud Mycol. 2004;49:175–200.Google Scholar
  16. 16.
    La Guerche S, Garcia C, Darriet P, Dubourdieu D, Labarere J. Characterization of Penicillium species isolated from grape berries by their internal transcribed spacer (ITS1) sequences and by gas chromatography–mass spectrometry analysis of geosmin production. Curr Microbiol. 2004;48:405–11.PubMedGoogle Scholar
  17. 17.
    Seifert KA, Samson RA, de Waard JR, Houbraken J, Levesque CA, Moncalvo JM, et al. Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as test case. Proc Nat Acad Sci USA. 2007;104:3901–6. doi:10.1073/pnas.0611691104.PubMedCrossRefGoogle Scholar
  18. 18.
    Peterson SW, Sigler L. Four new Penicillium species having Thysanophora-like melanized conidiophores. Mycol Res. 2002;106:1109–18. doi:10.1017/S0953756202006433.CrossRefGoogle Scholar
  19. 19.
    Peterson SW, Perez J, Vega FE, Infante F. Penicillium brocae, a new species associated with the coffee berry borer in Chiapas, Mexico. Mycologia. 2003;95:141–7. doi:10.2307/3761973.CrossRefGoogle Scholar
  20. 20.
    Peterson SW. Phylogenetic analysis of Penicillium species based on ITS and lsu-rDNA nucleotide differences. In: Samson RA, Pitt JI, editors. Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Amsterdam: Harwood Academic Publishers; 2000. p. 163–78.Google Scholar
  21. 21.
    Peterson SW. Multilocus DNA sequence analysis shows that Penicillium biourgeianum is a distinct species closely related to P. brevicompactum, P. olsonii. Mycol Res. 2004;108:434–40. doi:10.1017/S0953756204009761.PubMedCrossRefGoogle Scholar
  22. 22.
    Skouboe P, Frisvad JC, Taylor JW, Lauritsen D, Boysen M, Rossen L. Phylogenetic analysis of nucleotide sequences from the ITS region of terverticillate Penicillium species. Mycol Res. 1999;103:873–81. doi:10.1017/S0953756298007904.CrossRefGoogle Scholar
  23. 23.
    Scott J, Untereiner WA, Wong B, Straus NA, Malloch D. Genotypic variation in Penicillium chrysogenum from indoor environments. Mycologia. 2004;96:1095–105. doi:10.2307/3762092.CrossRefGoogle Scholar
  24. 24.
    Tuthill DE. Genetic variation and recombination in Penicillium miczynskii and Eupenicillium, species. Mycol Prog. 2004;3:3–12. doi:10.1007/s11557-006-0070-3.CrossRefGoogle Scholar
  25. 25.
    Hulton CSJ, Higgins CF, Sharp PM. ERIC sequences—a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol. 1991;5:825–34. doi:10.1111/j.1365-2958.1991.tb00755.x.PubMedCrossRefGoogle Scholar
  26. 26.
    Gillings M, Holley M. Repetitive element PCR fingerprinting (rep-PCR) using enterobacterial repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC elements. Lett Appl Microbiol. 1997;25:17–21. doi:10.1046/j.1472-765X.1997.00162.x.PubMedCrossRefGoogle Scholar
  27. 27.
    Edel V, Steinberg C, Avelange I, Laguerre G, Alabouvette C. Comparison of 3 molecular methods for the characterization of Fusarium oxysporum strains. Phytopathology. 1995;85:579–85. doi:10.1094/Phyto-85-579.CrossRefGoogle Scholar
  28. 28.
    de Arruda MCC, Millar RNG, Ferreira MASV, Felipe MSS. Comparison of Crinipellis perniciosa isolates from Brazil by ERIC repetitive element sequence-based PCR genomic fingerprinting. Plant Pathol. 2003;52:236–44. doi:10.1046/j.1365-3059.2003.00819.x.CrossRefGoogle Scholar
  29. 29.
    Reynaldi FJ, Lopez AC, Albo GN, Alippi AM. Differentiation of Ascosphaera apis isolates by rep-PCR fingerprinting and determination of chalkbrood incidence in Argentinean honey samples. J Apic Res. 2003;42:68–76.Google Scholar
  30. 30.
    Berg G, Zachow C, Lottmann J, Gotz M, Costa R, Smalla K. Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl Environ Microb. 2005;71:4203–13. doi:10.1128/AEM.71.8.4203-4213.2005.CrossRefGoogle Scholar
  31. 31.
    Frisvad JC, Lund F, Elmholt S. Ochratoxin A producing Penicillium verrucosum isolates from cereals reveal large AFLP fingerprinting variability. J Appl Microbiol. 2005;98:684–92. doi:10.1111/j.1365-2672.2004.02509.x.PubMedCrossRefGoogle Scholar
  32. 32.
    Oliveri C, Campisano A, Catera C, Cirvilleri G. Characterization and fAFLP genotyping of Penicillium strains from postharvest samples and packinghouse environments. J Plant Pathol. 2007;89:29–40.Google Scholar
  33. 33.
    Goettel M S, Hajek AE, Siegel JP, Evans HC. Safety of fungal biocontrol agents. In: Butt TM, Jackson CW, Magan N, editors. Fungi as biological control agents: progress, problems and potential, CABI Publishing: Oxon; 2001. p. 347–375.Google Scholar
  34. 34.
    Council Directive 2005/25/EC of 14 March 2005 amending Annex VI to Directive 91/414/EEC as regards plant protection products containing micro-organisms. Official J Eur Union L 90, 2005;48(8):1–34.Google Scholar
  35. 35.
    De Cal A, M-Sagasta E, Melgarejo P. Biological control of peach twig blight (Monilinia laxa) with Penicillium frequentans. Plant Pathol. 1990;39:612–8. doi:10.1111/j.1365-3059.1990.tb02542.x.CrossRefGoogle Scholar
  36. 36.
    Larena I, Melgarejo P. Biological control of plant pathogens by a lytic-enzyme-producing Penicillium purpurogenum. Biol Control. 1996;6:631–7. doi:10.1006/bcon.1996.0046.CrossRefGoogle Scholar
  37. 37.
    Sabuquillo P, De Cal A, Melgarejo P. Biocontrol of tomato wilt by Penicillium oxalicum formulations in different crop conditions. Biol Control. 2006;37:256–65. doi:10.1016/j.biocontrol.2006.02.009.CrossRefGoogle Scholar
  38. 38.
    Bidochka MJ. Monitoring the fate of biocontrol fungi. In: Butt TM, Jackson CW, Magan N, editors. Fungi as biological control agents: progress, problems and potential. Oxon: CABI Publising; 2001. p. 193–218.Google Scholar
  39. 39.
    Melgarejo P, Carrillo R, M-Sagasta E. Mycoflora of peach twigs and lowers and its possible significance in biological control of Monilinia laxa. Trans Brit Mycol Soc. 1985;85:313–7.CrossRefGoogle Scholar
  40. 40.
    De Cal A, Pascual S, Melgarejo P. Involvement of resistance induction by Penicillum oxalicum in the biocontrol of tomato wilt. Plant Pathol. 1997;46:72–9. doi:10.1046/j.1365-3059.1997.d01-204.x.CrossRefGoogle Scholar
  41. 41.
    Keijer J, Houterman PM, Dullemans AM, Korsman MG. Heterogeneity in electrophoretic karyotype within and between anastomosis groups of Rhizoctonia solani. Mycol Res. 1996;100:789–97.CrossRefGoogle Scholar
  42. 42.
    Sambrook J, Russsell DW. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor; 2001.Google Scholar
  43. 43.
    White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315–22.Google Scholar
  44. 44.
    Hall TA. Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/Nt. Nucleic Acids Symp Ser. 1999;41:95–8.Google Scholar
  45. 45.
    Thompson JD, Higgins DG, Gibson TJ. Clustal-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80. doi:10.1093/nar/22.22.4673.PubMedCrossRefGoogle Scholar
  46. 46.
    Kumar S, Tamura K, Jakobse IB, Nei M. Mega2: molecular evolutionary genetic analysis software. Bioinformatics. 2001;17:1244–5. doi:10.1093/bioinformatics/17.12.1244.PubMedCrossRefGoogle Scholar
  47. 47.
    Saitou N, Nei M. The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.PubMedGoogle Scholar
  48. 48.
    Jukes TH, Cantor RC. Evolution of protein molecules. In: Munro HN, editor. Mammalian protein metabolism. New York: Academic Press; 1969. p. 21–132.Google Scholar
  49. 49.
    Louws FJ, Rademaker JLW, de Bruijn FJ. The three Ds of PCR-based genomic analysis of phytobacteria: diversity, detection, and disease diagnosis. Ann Rev Phytopathol. 1999;37:81–125. doi:10.1146/annurev.phyto.37.1.81.CrossRefGoogle Scholar
  50. 50.
    Dice LR. Measures of the amount of ecological association between species. Ecology. 1945;26:297–302. doi:10.2307/1932409.CrossRefGoogle Scholar
  51. 51.
    Kroon LPNM, Verstappen ECP, Kox LFF, Flier WG, Bonants PJM. A rapid diagnostic test to distinguish between American and European populations of Phytophthora ramorum. Phytopathology. 2004;94:613–20. doi:10.1094/PHYTO.2004.94.6.613.PubMedCrossRefGoogle Scholar
  52. 52.
    Soll DR. The ins and outs of DNA fingerprinting the infectious fungi. Clin Microbiol Rev. 2000;13:332–69. doi:10.1128/CMR.13.2.332-370.2000.PubMedCrossRefGoogle Scholar
  53. 53.
    Alvarez I, Wendel JF. Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol. 2003;29:417–34. doi:10.1016/S1055-7903(03)00208-2.PubMedCrossRefGoogle Scholar
  54. 54.
    Haugland RA, Heckman JL, Wymer LJ. Evaluation of different methods for the extraction of DNA from fungal conidia by quantitative competitive PCR analysis. J Microbiol Meth. 1999;37:165–76. doi:10.1016/S0167-7012(99)00061-5.CrossRefGoogle Scholar
  55. 55.
    Turin L, Riva F, Galbiati G, Cainelli T. Fast, simple and highly sensitive double-rounded polymerase chain reaction assay to detect medically relevant fungi in dermatological specimens. Eur J Clin Invest. 2000;30:511–8. doi:10.1046/j.1365-2362.2000.00659.x.PubMedCrossRefGoogle Scholar
  56. 56.
    Berbee ML, Yoshimura A, Sugiyama J, Taylor JW. Is Penicillium monophyletic—an evaluation of phylogeny in the family Trichocomaceae from 18S, 5.8S and its ribosomal DNA sequence data. Mycologia. 1995;87:210–22. doi:10.2307/3760907.CrossRefGoogle Scholar
  57. 57.
    Yua T, Wangb L, Yina Y, Wanga Y, Zhenga X. Effect of chitin on the antagonistic activity of Cryptococcus laurentii against Penicillium expansum in pear fruit. Int J Food Microbiol. 2008;122:44–8. doi:10.1016/j.ijfoodmicro.2007.11.059.CrossRefGoogle Scholar
  58. 58.
    Cubero J, Graham JH. Genetic relationship among worldwide strains of Xanthomonas causing canker in citrus species and design of new primers for their identification by PCR. Appl Environ Microb. 2002;68:1257–64. doi:10.1128/AEM.68.3.1257-1264.2002.CrossRefGoogle Scholar
  59. 59.
    Milgroom MG, Peever TL. Population biology of plant pathogens—the synthesis of plant disease epidemiology and population genetics. Plant Dis. 2003;87:608–17.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Cristina Redondo
    • 1
  • Jaime Cubero
    • 1
  • Paloma Melgarejo
    • 1
  1. 1.Laboratorio de Patología Vegetal, Departamento de Protección VegetalInstituto Nacional de Investigación Agraria y Alimentaria (INIA)MadridSpain

Personalised recommendations