Skip to main content
Log in

Affinity Purification of Trypsin Inhibitor with Anti-Aspergillus Flavus Activity from Cultivated and Wild Soybean

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Trypsin inhibitors (TI) from wild-type soybean (Glycine soya) (WBTI) and domesticated soybean (Glycine max) (SBTI) were purified using prepared chitosan resin-trypsin as filler on the affinity chromatography column. The SBTI/WBTI purification fold by affinity chromatography was 718- and 279-fold, with the activity recovery of 62% and 59%, respectively. It was found that SBTI and WBTI exerted a strong inhibition of Aspergillus. flavus growth, with IC50 of 1.6 and 1.0 μmol/l. This growth inhibition was possibly the result of the inhibition on α-amylase activity of A. flavus by both the SBTI and WBTI. This was further supported by the fact that in the presence of SBTI and WBTI at 9.0 and 6.0 μg/g (peanut) on peanuts inhibited the germination and growth of A. flavus. Accordingly, characterization of the mode of action of SBTI and WBTI could constitute a first step leading to resistance to A. flavus invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

TI:

Trypsin inhibitor

SBTI:

Soybean (Glycine max) trypsin inhibitor

WBTI:

Wild Soybean (Glycine soya) trypsin inhibitor

A. flavus :

Aspergillus flavus

References

  1. Binder EM, Tan LM, Chin LJ. Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Animal Feed Sci. Technol. 2007;137:265–82. doi:10.1016/j.anifeedsci.2007.06.005.

    Article  CAS  Google Scholar 

  2. Cleveland TE, Dowd PF, Desjardins , Bhatnagar D, Cotty PJ. United States Department of Agriculture-Agricultural Research Service research on pre-harvest prevention of mycotoxins and mycotoxigenic fungi in US crops. Pest Manag. Sci. 2003;59:629–42. doi:10.1002/ps.724.

    Article  PubMed  CAS  Google Scholar 

  3. Magan N, Aldred D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2007;119:131–9. doi:10.1016/j.ijfoodmicro.2007.07.034.

    Article  PubMed  CAS  Google Scholar 

  4. Vergauwen R, Van LF, Van LA. Purification and characterization of strongly chitin-binding chitinases from salicylic acid-treated leek. Physiol. Plant. 1998;104:175–82. doi:10.1034/j.1399-3054.1998.1040205.x.

    Article  CAS  Google Scholar 

  5. Lam YW, Wang HX, Ng TB. A robust cysteine-deficient chitinase-like antifungal protein from inner shoots of the edible chive Allium tuberosum. Biochem. Biophys. Res. Commun. 2000;279:74–80. doi:10.1006/bbrc.2000.3821.

    Article  PubMed  CAS  Google Scholar 

  6. Vogelsang R, Barz W. Purification, characterization and differential hormonal regulation of a β-1, 3-glucanase and two chitinases from chickpea (Cicer arietinum L.). Planta. 1993;189:60–9. doi:10.1007/BF00201344.

    Article  PubMed  CAS  Google Scholar 

  7. Leah R, Tommerup H, Svendsen I, Mundy J. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem. 1991;266:1564–73.

    PubMed  CAS  Google Scholar 

  8. Grenier J, Potvin C, Trudel J, Asselin A. Some thaumatin-like proteins hydrolyse polymeric beta-1, 3-glucans. Plant J. 1999;19:473–80. doi:10.1046/j.1365-313X.1999.00551.x.

    Article  PubMed  CAS  Google Scholar 

  9. Ye XY, Nd TB, Rao PF. A Bowman–Birk-type trypsin-chymotrypsin inhibitor from broad beans. Biochem. Bioph. Res. Commun. 2001;289:91–6. doi:10.1006/bbrc.2001.5965.

    Article  CAS  Google Scholar 

  10. Wang HX, Ng TB. Concurrent isolation of a Kunitz-type trypsin inhibitor with antifungal activity and a novel lectin from Pseudostellaria heterophylla roots. Biochem. Bioph. Res. Commun. 2006;342:349–53.

    Article  CAS  Google Scholar 

  11. Yang XY, Li J, Wang XW, Fang WG, Michael JB, Rong S, et al. Psc-AFP, an antifungal protein with trypsin inhibitor activity from Psoralea corylifolia seeds. Peptides. 2006;27:1726–31. doi:10.1016/j.peptides.2006.01.020.

    Article  PubMed  CAS  Google Scholar 

  12. Epple P, Apel K, Bohlmann H. Over expression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell. 1997;9:509–20.

    Article  PubMed  CAS  Google Scholar 

  13. Wang SY, Wu JH, Ng TB, Ye XY, Rao PF. A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides. 2004;25:1235–42. doi:10.1016/j.peptides.2004.06.004.

    Article  PubMed  CAS  Google Scholar 

  14. Chen ZY, Brown RL, Lax AR, Cleveland TE, Russin JS. Inhibition of plant-pathogenic fungi by a corn trypsin inhibitor overexpressed in Escherichia coli. Appl. Environ. Microbiol. 1999;65:1320–24.

    PubMed  CAS  Google Scholar 

  15. Chen ZY, Brown RL, Russin JS, Lax AR, Cleveland TE. A corn trypsin inhibitor with antifungal activity inhibits Aspergillus flavus α-amylase. Biochem. Cell Biol. 1999;89:902–7.

    CAS  Google Scholar 

  16. Kim MH, Park SC, Kim JY, Lee SY, Lim HT, Cheong H, et al. Purification and characterization of a heat-stable serine protease inhibitor from the tubers of new potato variety “Golden Valley”™. Biochem. Bioph. Res. Commun. 2006;346:681–6. doi:10.1016/j.bbrc.2006.05.186.

    Article  CAS  Google Scholar 

  17. Mellon JE, Cotty PJ, Dowd MK. Aspergillus flavus hydrolases: their roles in pathogenesis and substrate utilization. Appl. Microbiol. Biotechnol. 2007;77:497–504. doi:10.1007/s00253-007-1201-8.

    Article  PubMed  CAS  Google Scholar 

  18. Chen MS, Feng G, Zen KC, Richardson M, Valdes-Rodriguez S, Reeck GR, et al. α-Amylases from three species of stored grain Coleoptera and their inhibition by wheat and corn proteinaceous inhibitors. Insect. Biochem. Mol. Biol. 1992;22:261–8. doi:10.1016/0965-1748(92)90063-K.

    Article  CAS  Google Scholar 

  19. Fakhoury AM, Woloshuk CP. Amyl, the α-amylase gene of Aspergillus flavus: involvement in aflatoxin biosynthesis in maize kernels. Phytopathology. 1999;89:908–14. doi:10.1094/PHYTO.1999.89.10.908.

    Article  PubMed  CAS  Google Scholar 

  20. Chen ZY, Brown RL, Russin JS, Lax AR, Cleveland TE. A corn trypsin inhibitor with antifungal activity and associated with host resistance to aflatoxin elaboration inhibits Aspergillus flavus alpha-amylase production. Phytopathology. 1998;88(suppl):S16.

    Google Scholar 

  21. Shivaraj B, Pattabiraman TN. Characterization of an unusual α-amylase/trypsin inhibitor from ragi (Eleusine coracana Gearta.). Biochem. J. 1981;193:29–36.

    PubMed  CAS  Google Scholar 

  22. Jia ZS, Li XL. Determination of the Deacetylation Degree of Chitosan by Acid Base Conductometric Titration. Chin. J. Anal. Chem. 2002;7:846–8.

    Google Scholar 

  23. Wang DF. A type of particle of multifunctional rare earth polysaccharide and its preparation process. Chinese Invention Patent. 2005100422288.

  24. Zhang B, Zhang L, Yu LN, Wang DF. Preparation of immobilized trypsin chitosan resin and its absorption property for soybean trypsin inhibitor. Sci. Technol. Food Ind. 2007;7:65–8.

    Google Scholar 

  25. Carlton B, Ines M. An improved test for the quantitative determination of trypsin, trypsin-like enzymes, and enzyme inhibitors. Anal. Biochem. 1961;2:370–9. doi:10.1016/0003-2697(61)90010-0.

    Article  Google Scholar 

  26. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi:10.1038/227680a0.

    Article  PubMed  CAS  Google Scholar 

  27. Li W, Shao YZ, Chen WX. Improved Method for Determining Amylase Activity. Plant Physiol. Commun. 2005;41:655–66.

    CAS  Google Scholar 

  28. Zhang L, Wang DF, Zhang B, Sun LP. Advances in the study of protease inhibitors from leguminous plants. Soybean Sci. 2006;3:314–9.

    Google Scholar 

  29. Sessa DJ, Wolf WJ. Bowman–Birk inhibitors in soybean seed coats. Ind Crops Prod. 2001;14:73–83. doi:10.1016/S0926-6690(00)00090-X.

    Article  CAS  Google Scholar 

  30. Paiva PMG, Oliva MLV, Fritz H, Coelho LCBB, Sampaio CAM. Purification and primary structure determination of two Bowman–Birk type trypsin isoinhibitors from Cratylia mollis seeds. Phytochem. 2006;67:545–52. doi:10.1016/j.phytochem.2005.12.017.

    Article  CAS  Google Scholar 

  31. Mello GC, Oliva MV, Sumikawa JT, Machado OLT, Marangoni S, et al. Purification and characterization of a new trypsin inhibitor from Dimorphandra mollis seeds. J. Protein Chem. 2001;20:625–32. doi:10.1023/A:1013764118579.

    Article  PubMed  CAS  Google Scholar 

  32. Wong JH, Ng TB. Gymnin, a potent defensin-like antifungal peptide from the Yunnan bean (Gymnocladus chinensis Baill). Peptides. 2003;24:963–8. doi:10.1016/S0196-9781(03)00192-X.

    Article  PubMed  CAS  Google Scholar 

  33. Shivaraj B, Pattabiraman TN. Natural plant enzyme inhibitors. Biochem J. 1998;193:29–36.

    Google Scholar 

Download references

Acknowledgement

We thank the Science and Technology Program from Shandong province (2007GG10009005) and the marine project for public benefits from oceanic bureau of China (200805038), and Yan-Li XU for her excellent assistance. Special thanks to Dr. Peter Bucheli from Nestlé R&D Centre Shanghai Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Feng Wang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

MOESM1 [INSERT CAPTION HERE] (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Wang, DF., Fan, Y. et al. Affinity Purification of Trypsin Inhibitor with Anti-Aspergillus Flavus Activity from Cultivated and Wild Soybean. Mycopathologia 167, 163–171 (2009). https://doi.org/10.1007/s11046-008-9160-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-008-9160-x

Keywords

Navigation