Skip to main content
Log in

Domain II Hairpin Structure in ITS1 Sequences as an Aid in Differentiating Recently Evolved Animal and Plant Pathogenic Fungi

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The hypothesis that ITS structural features can be used to define fungal groups, where sequence analysis is unsatisfactory, was examined in plant and animal pathogenic fungi. Structural models of ITS1 regions were predicted for presumed closely related species in Colletotrichum and Trichophyton anamorphs of Arthroderma species. Structural alignment of models and comparison with ITS sequence analysis identified a variable region in a conserved hairpin formed from a common inverted repeat. Thirteen different hairpin structure models were obtained for Colletotrichum species and five different models were obtained for Trichophyton species. The different structure types could be matched to individual species and species complexes as defined by ITS sequence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bridge PD, Spooner BM, Roberts PJ. The impact of molecular data in fungal systematics. Adv Bot Res 2005;42:33–67.

    Article  CAS  Google Scholar 

  2. Edel V, Steinberg C, Gautheron N, Alabouvette C. Evaluation of restriction analysis of polymerase chain reaction (PCR)-amplified ribosomal DNA for the identification of Fusarium species. Mycol Res 1996;101:179–87.

    Article  Google Scholar 

  3. Bridge PD, Waller JM, Davies D, Buddie AG. Variability of Colletotrichum kahawae in relation to other Colletotrichum species from tropical perennial crops and the development of diagnostic techniques. J Phytopathol 2008. doi:10.1111/j.1439-0434.2007.01354.x.

  4. Tymon AM, Shah PA, Pell JK. PCR-based molecular discrimination of Pandora neoaphidis isolates from related entomopathogenic fungi and development of species-specific diagnostic primers. Mycol Res 2004;108:419–33.

    Article  PubMed  CAS  Google Scholar 

  5. Xue B, Goodwin PH, Annis SL. Pathotype identification of Leptosphaeria maculans with PCR and oligonucleotide primers from ribosomal internal transcribed spacer sequences. Physiol Mol Plant Pathol 1992;41:179–88.

    Article  CAS  Google Scholar 

  6. Brown AE, Muthumeenakshi S, Sreenivasaprasad S, Mills PR, Swinburne TR. A PCR primer-specific to Cylindrocarpon heteronema for detection of the pathogen in apple wood. FEMS Microbiol Lett 1993;108:117–20.

    Article  PubMed  CAS  Google Scholar 

  7. Sreenivasaprasad S, Mills PR, Meehan BM, Brown AE. Phylogeny and systematics of 18 Colletotrichum species based on ribosomal DNA spacer sequences. Genome 1996;39:499–512.

    Article  PubMed  CAS  Google Scholar 

  8. Makimura K, Tamura Y, Mochizuki T, Hasegawa A, Tajiri Y, Hanazawa R, Uchida K, Saito H, Yamaguchi H. Phylogenetic classification and species identification of dermatophyte strains based on DNA sequences of nuclear ribosomal internal transcribed spacer 1 regions. J Clin Microbiol 1999;37:920–4.

    PubMed  CAS  Google Scholar 

  9. van Neus RW, Rientjes JM, van der Sande CA, Zerp SF, Sluiter C, Venema J, Planta RJ, Raue HA. Separate structural elements within the internal transcribed spacer 1 of Saccharomyces cerevisiae precursor ribosomal RNA direct the formation of 17S and 26S rRNA. Nucl Acid Res 1994;22:912–9.

    Article  Google Scholar 

  10. Gottschling M, Plötner J. Secondary structure models of the nuclear internal transcribed spacer regions and 5.8S rRNA in Calciodinelloideae (Peridiniaceae) and other dinoflagellates. Nucl Acid Res 2004;32:307–15.

    Article  CAS  Google Scholar 

  11. Lalev AI, Nazar RN. Structural equivalence in the transcribed spacers of pre-rRNA transcripts in Schizosaccharomyces pombe. Nucl Acid Res 1999;27:3071–8.

    Article  CAS  Google Scholar 

  12. Campbell CS, Wright WA, Cox M, Vining TF, Major CS, Arsenault MP. Nuclear ribosomal DNA internal transcribed spacer 1 (ITS1) in Picea (Pinaceae): sequence divergence and structure. Mol Phylogen Evol 2005;35:165–85.

    Article  CAS  Google Scholar 

  13. Won H, Renner SS. The internal transcribed spacer on nuclear ribosomal DNA in the gymnosprem Gnetum. Mol Phylogenet Evol 2005;36:581–97.

    Article  PubMed  CAS  Google Scholar 

  14. Gonzalez P, Labarère J. Sequence and secondary structure of the mitochondrial small-subunit rRNA V4, V6 and V9 domains reveal highly species-specific variations within the genus Agrocybe. Appl Environ Microbiol 1998;64:4149–60.

    PubMed  CAS  Google Scholar 

  15. Tuckwell DS, Nicholson MJ, McSweeney SS, Theodorou MK, Brookman JL. The rapid assignment of ruminal fungi to presumptive genera using ITS1 and ITS2 RNA secondary structures to produce group-specific fingerprints. Microbiology 2005;151:1557–67.

    Article  PubMed  CAS  Google Scholar 

  16. Landis FC, Gargas A. Using ITS2 secondary structure to create species-specific oligonucleotide probes for fungi. Mycologia 2007;99:681–92.

    Article  PubMed  CAS  Google Scholar 

  17. Cannon PF, Bridge PD, Monte E. Linking the past, present, and future of Colletotrichum systematics. In: Prusky D, Freeman S, Dickman M, editors. Colletotrichum: host specificity, pathology, and host-pathogen interaction. St Paul Minnesota: American Phytopathological Society, 2000. p. 1–20.

    Google Scholar 

  18. Sreenivasaprasad S, Brown AE, Mills PR. DNA sequence variation and interrelationships among Colletotrichum species causing strawberry anthracnose. Physiol Mol Plant Pathol 1992;41:265–81.

    Article  CAS  Google Scholar 

  19. Sreenivasaprasad S, Mills PR, Brown AE. Nucleotide sequence of the rDNA spacer 1 enables identification of isolates of Colletotrichum as C. acutatum. Mycol Res 1994;98:186–8.

    Article  CAS  Google Scholar 

  20. Summerbell RC, Haugland RA, Li A, Gupta AK. rRNA gene internal transcribed spacer 1 and 2 sequences of asexual, anthropophilic dermatophytes related to Trichophyton rubrum. J Clin Microbiol 1999;37:4005–11.

    PubMed  CAS  Google Scholar 

  21. Kirk PM, Cannon PF, David JC, Stalpers JA, editors. Ainsworth & Bisby’s dictionary of the fungi. 9th ed. Wallingford: CAB International; 2001.

    Google Scholar 

  22. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acid Res 1994;22:4673–80.

    Article  CAS  Google Scholar 

  23. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucl Acid Res 2003;31:3406–15.

    Article  CAS  Google Scholar 

  24. Clamp M, Cuff J, Searle SM, Barton GJ. The Jalview Java Alignment Editor. Bioinformatics 2004;20:426–7.

    Article  PubMed  CAS  Google Scholar 

  25. Höchsmann, M. The tree alignment model: Algorithms, implementations and applications for the analysis of RNA secondary structures. PhD Thesis Bielefeld University, 2005. (available as .pdf file at http://bibiserv.techfak.uni-bielefeld.de/rnaforester/diss_hoechsmann.pdf).

  26. Höchsmann M, Voss B, Giegerich R. Pure multiple RNA secondary structure alignments: a progressive profile approach. IEEE/ACM Trans Comput Biol Bioinform 2004;1:53–62.

    Article  PubMed  Google Scholar 

  27. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, 2005.

  28. Page RDM. TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Appl Biosci 1996;12:357–8.

    CAS  Google Scholar 

  29. Freeman S, Minz D, Jurkevitch E, Maymon M, Shabi E. Molecular analyses of Colletotrichum species from almond and other fruits. Phytopathology 2000;90:608–14.

    Article  CAS  PubMed  Google Scholar 

  30. Afanador-Kafuri L, Minz D, Maymon M, Freeman S. Characterization of Colletotrichum isolates from Tamarillo, Passiflora, and Mango in Colombia and identification of a unique species from the genus. Phytopathology 2003;93:579–87.

    Article  CAS  PubMed  Google Scholar 

  31. Makimura K, Mochizuki T, Hasegawa A, Uchida K, Saito H, Yamaguchi H. Phylogenetic classification of Trichophyton mentagrophytes complex strains based on DNA spacers of nuclear ribosomal internal transcribed spacer 1 regions. J Clin Microbiol 1998;36:2629–33.

    PubMed  CAS  Google Scholar 

  32. Gräser Y, de Hoog GS, Kuijpers AFA. Recent advances in the molecular taxonomy of dermatophytes In: Kushwaha RKS, Guarro J, editors. Biology of Dermatophytes and other Keratinophilic fungi. Bilbao Spain: Revista Iberoamericana de Micologia (suppl.), 2000, p. 17–21.

    Google Scholar 

  33. Mathews DH, Sabina J, Zuker M, Turner DH. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. JMol Biol 1999;288:911–40.

    Article  CAS  Google Scholar 

  34. Goertzen LR, Cannone JJ, Gutell RR, Jansen RK. ITS secondary structure derived from comparative analysis: implications for sequence alignment, phylogeny of the Asteraceae. Mol Phylogenet Evol 2003;29:216–34.

    Article  PubMed  CAS  Google Scholar 

  35. Gardner PP, Giegerich R. A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 2004;5:140.

    Article  PubMed  CAS  Google Scholar 

  36. Mayol M, Rossello JA. Why ribosomal DNA spacers (ITS) tell different stories in Quercus. Mol Phylogenet, Evol 2001;19:167–76.

    Article  CAS  Google Scholar 

  37. Liu JS, Schardl CL. A conserved sequence in internal transcribed spacer 1 of plant nuclear rRNA genes. Plant Mol Biol 1994;26:775–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Bridge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bridge, P.D., Schlitt, T., Cannon, P.F. et al. Domain II Hairpin Structure in ITS1 Sequences as an Aid in Differentiating Recently Evolved Animal and Plant Pathogenic Fungi. Mycopathologia 166, 1–16 (2008). https://doi.org/10.1007/s11046-008-9094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-008-9094-3

Keywords

Navigation