Skip to main content

Advertisement

Log in

Magnesium represses trichothecene biosynthesis and modulates Tri5, Tri6, and Tri12 genes expression in Fusarium graminearum

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Growth and production of type-B trichothecenes mycotoxins by the Fusarium graminearum strain CBS 185.32 were compared in GYEP medium supplemented with Mg2+ at different concentrations (0–4 mM). Mg2+ led to a strong decrease in toxin accumulation without affecting the mycelial growth, suggesting a specific Mg2+ effect on fungal secondary metabolism. Expression of Tri5, Tri6, and Tri12 genes was followed throughout the time courses of type-B trichothecenes (TCTB) yield in standard and 2 mM Mg2+-supplemented GYEP media. Mg2+ addition significantly decreased Tri5, Tri6, and Tri12 expression. The inhibition of toxin production by Mg2+ was shown to be highly correlated with inhibition of Tri5 transcription and, to a lesser extend, of Tri6 and Tri12. This is the first report of a transcriptional control of TCTB production by Mg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GYEP:

Glucose Yeast Extract Peptone

DON:

Deoxynivalenol

3-ADON:

3-Acetyl-deoxynivalenol

15-ADON:

15-Acetyl-deoxynivalenol

TCTB:

Type-B trichothecenes

References

  1. Pitt JI, Basilico JC, Abarca ML, Lopez C. Mycotoxins and toxigenic fungi. Med Mycol 2000;38(Suppl 1):41–6.

    PubMed  CAS  Google Scholar 

  2. Miller JD, Taylor A, Greenhalgh R. Production of deoxynivalenol and related compounds in liquid culture by Fusarium graminearum. Can J Microbiol 1983;29:1171–8.

    Article  CAS  Google Scholar 

  3. Miller JD, Greenhalgh R. Nutrient effects on the biosynthesis of trichothecenes and other metabolites by Fusarium graminearum. Mycologia 1985;77:130–6.

    Article  CAS  Google Scholar 

  4. O’Neill K, Damoglou AP, Patterson MF. Toxin production by Fusarium culmorum IMI 309344 and F. graminearum NRRL 5883 on grain substrates. J Appl Bacteriol 1993; 74:625–8.

    CAS  Google Scholar 

  5. Bily AC. Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: Resistance factors to Fusarium graminearum. Phytopathology 2003;93:712–9.

    Article  CAS  PubMed  Google Scholar 

  6. Thind KS, Madan M. Effect of various trace elements on the growth and sporulation of four fungi. Proc Indian Natl Sci Acad B 1977;43:115–24.

    Google Scholar 

  7. Jackson MA, Slininger PJ, Bothast RJ. Effects of zinc, iron, cobalt, and manganese on Fusarium moniliforme NRRL 13616 growth and fusarin C biosynthesis in submerged cultures. Appl Environ Microbiol 1989;55: 649–55.

    PubMed  CAS  Google Scholar 

  8. Cuero R, Duffus E, Williams M, Baca D, Navarro M. Effects of zinc and associated mycoflora on fungal growth and toxin production: F. moniliforme, F. graminearum, A. flavus. In: Miraglia M, van Egmond H, Brera B, Gilbert J, editors. Mycotoxins and phycotoxins-developments in chemistry, toxicology and food safety. Fort Collins: Alaken Inc.; 1998. Chapter 33, p. 311–319.

    Google Scholar 

  9. Cuero R, Ouellet T, Yu J, Mogongwa N. Metal ion enhancement of fungal growth, gene expression and aflatoxin synthesis in Aspergillus flavus: RT-PCR characterization. J Appl Microbiol 2003;94:953–61.

    Article  PubMed  CAS  Google Scholar 

  10. Cuero R, Ouellet T. Metal ions modulate gene expression and accumulation of the mycotoxins aflatoxin and zearalenone. J Appl Microbiol 2005;98:598–605.

    Article  PubMed  CAS  Google Scholar 

  11. Weinberg ED. Biosynthesis of secondary metabolites: Roles of trace metals. Adv Microbiol Physiol 1970;4:1–14.

    Article  CAS  Google Scholar 

  12. Vasavada AB, Hsieh DP. Effects of metals on 3-acetyldeoxynivalenol production by Fusarium graminearum R2118 in submerged cultures. Appl Environ Microbiol 1988;54:1063–5.

    PubMed  CAS  Google Scholar 

  13. Bakan B. Approche physiologique de la biosynthèse des trichothécènes par Fusarium. Essais de validation de méthodes moléculaires permettant le suivi de souches de Fusarium (Doctoral dissertation). Institut National Agronomique Paris-Grignon, France; 1998. 150 pp.

  14. Vasavada AB, Hsieh DPH. Manganese inhibition of 3-acetyldeoxynivalenol biosynthesis in Fusarium graminearum R 2118. Appl Microbiol Biotechnol 1990;33: 335–9.

    Article  CAS  Google Scholar 

  15. Hohn TM, Vanmiddlesworth F. Purification and characterization of the sesquiterpene cyclase trichodiene synthetase from Fusarium sporotrichioides. Arch Biochem Biophys 1986;251:756–61.

    Article  PubMed  CAS  Google Scholar 

  16. Cane DE, Xue Q, Fitzsimons BC. Trichodiene synthase. Probing the role of the highly conserved aspartate-rich region by site-directed mutagenesis. Biochemistry (Mosc) 1996;35:12369–76.

    Article  CAS  Google Scholar 

  17. Kimura M, Tokai T, O’Donnell K, Ward TJ, Fujimura M, Hamamoto H. The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Lett 2003;539:105–10.

    Article  PubMed  CAS  Google Scholar 

  18. Hohn TM, Desjardins AE. Isolation and gene disruption of the Tox5 gene encoding trichodiene synthase in Gibberella pulicaris. Mol Plant Microbe Interact 1992;5:249–56.

    PubMed  CAS  Google Scholar 

  19. Proctor RH, Hohn TM, McCormick SP, Desjardins AE. Tri6␣encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Appl Environ Microbiol 1995;61: 1923–30.

    PubMed  CAS  Google Scholar 

  20. Alexander NJ, McCormick SP, Hohn TM. TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. Mol Gen Genet 1999;261:977–84.

    Article  PubMed  CAS  Google Scholar 

  21. Bakan B, Pinson L, Cahagnier B, Melcion D, Semon E, Richard-Molard D. Toxigenic potential of Fusarium culmorum strains isolated from French wheat. Food Addit Contam 2001;18:998–1003.

    Article  PubMed  CAS  Google Scholar 

  22. Niessen ML, Vogel RF. Group specific PCR-detection of potential trichothecene-producing Fusarium-species in pure cultures and cereal samples. Syst Appl Microbiol 1998;21:618–31.

    PubMed  CAS  Google Scholar 

  23. Doohan FM, Weston G, Rezanoor HN, Parry DW, Nicholson P. Development and use of a reverse transcription-PCR assay to study expression of Tri5 by Fusarium species in vitro and in planta. Appl Environ Microbiol 1999;65:3850–4.

    PubMed  CAS  Google Scholar 

  24. Ponts N, Pinson-Gadais L, Richard-Forget F. H2O2 effects on Trichothecenes B (DON, ADON) production by Fusarium graminearum in liquid culture. Aspects of applied biology. Wellesbourne UK: Association of Applied Biologists; 2003, p. 223–8.

    Google Scholar 

  25. Ponts N, Pinson-Gadais L, Barreau C, Richard-Forget F, Ouellet T. Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum. FEBS Lett 2007;581:443–7.

    Article  PubMed  CAS  Google Scholar 

  26. Greenhalgh R, Neish GA, Miller JD. Deoxynivalenol, acetyl deoxynivalenol, and zearalenone formation by Canadian isolates of Fusarium graminearum on solid substrates. Appl Environ Microbiol 1983;46:625–9.

    PubMed  CAS  Google Scholar 

  27. Roinestad KS, Montville TJ, Rosen JD. Mechanism for sodium-bicarbonate inhibition of Trichothecene biosynthesis in Fusarium tricinctum. J Agric Food Chem 1994;42:2025–8.

    Article  CAS  Google Scholar 

  28. Hohn TM, Krishna R, Proctor RH. Characterization of a transcriptional activator controlling trichothecene toxin biosynthesis. Fungal Genet Biol 1999;26:224–35.

    Article  PubMed  CAS  Google Scholar 

  29. Tag AG, Garifullina GF, Peplow AW, Ake C Jr., Phillips TD, Hohn TM. A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Appl Environ Microbiol 2001;67:5294–302.

    Article  PubMed  CAS  Google Scholar 

  30. Wuchiyama JKM, Yamaguchi I A trichothecene efflux pump encoded by Tri102 in the biosynthesis gene cluster␣of Fusarium graminearum. J Antibiot 2000;53: 196–200.

    PubMed  CAS  Google Scholar 

  31. Anglani C. Wheat minerals – a review. Plant Foods Hum Nutr 1998;52:177–86.

    Article  PubMed  CAS  Google Scholar 

  32. Pinson-Gadais L, Barreau C, Chaurand M, Gregoire S, Monmarson M, Richard-Forget F. Distribution of toxigenic Fusarium spp. and mycotoxin production in milling fractions of durum wheat. Food Addit Contam 2007;24: 53–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mondher Bouzayen and Thierry Candresse for receiving us in their laboratories for Tri genes experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laetitia Pinson-Gadais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinson-Gadais, L., Richard-Forget, F., Frasse, P. et al. Magnesium represses trichothecene biosynthesis and modulates Tri5, Tri6, and Tri12 genes expression in Fusarium graminearum . Mycopathologia 165, 51–59 (2008). https://doi.org/10.1007/s11046-007-9076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-007-9076-x

Keywords

Navigation