Skip to main content

Advertisement

Log in

Characterization of AFLAV, a Tf1/Sushi retrotransposon from Aspergillus flavus

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The plasmid, pAF28, a genomic clone from Aspergillus flavus NRRL 6541, has been used as a hybridization probe to fingerprint A. flavus strains isolated in corn and peanut fields. The insert of pAF28 contains a 4.5 kb region which encodes a truncated retrotransposon (AfRTL-1). In search for a full-length and intact copy of retrotransposon, we exploited a novel PCR cloning strategy by amplifying a 3.4 kb region from the genomic DNA of A. flavus NRRL 6541. The fragment was cloned into pCR®4-TOPO®. Sequence analysis confirmed that this region encoded putative domains of partial reverse transcriptase, RNase H, and integrase of the predicted retrotransposon. The two flanking long terminal repeats (LTRs) and the sequence between them comprise a putative full-length LTR retrotransposon of 7799 bp in length. This intact retrotransposon sequence is named AFLAV (A. flavus Retrotransposon). The order of the predicted catalytic domains in the polyprotein (Pol) placed AFLAV in the Tf1/sushi subgroup of the Ty3/gypsy retrotransposon family. Primers derived from AFLAV sequence were used to screen this retrotransposon in other strains of A. flavus. More than fifty strains of A. flavus isolated from different geological origins were surveyed and the results show that many strains have extensive deletions in the regions encoding the capsid (Gag) and Pol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marin I and Llorens C (2000). Ty3/Gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data. Mol Biol Evol 17: 1040–1049

    CAS  PubMed  Google Scholar 

  2. Butler M, Goodwin T, Simpson M, Singh M and Poulter R (2001). Vertebrate LTR retrotransposons of the TF1/Sushi group. J Mol Evol 52: 260–274

    CAS  PubMed  Google Scholar 

  3. Farman ML, Tosa Y, Nitta N and Leong SA (1996). MAGGY, a retrotransposon in the genome of the rice blast fungus Magnaporthe grisea. Mol Gen Genet 251: 665–674

    CAS  PubMed  Google Scholar 

  4. Dobinson KF, Harris RE and Hamer JE (1993). Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea. Mol Plant-Microbe Inter 6: 114–126

    CAS  Google Scholar 

  5. McHale MT, Roberts IN, Noble SM, Baeumont C, Whitehead MP, Seth D and Oliver RP (1992). CfT-I: an LTR-retrotransposon in Cladosporium fulvum, a fungal pathogen of tomato. Mol Gen Genet 233: 337–347

    Article  CAS  PubMed  Google Scholar 

  6. Anaya N and Roncero MIG (1995). skippy, a retrotransposon from the fungal Fusarium oxysporum. Mol Gen Genet 249: 637–647

    Article  CAS  PubMed  Google Scholar 

  7. Diolez A, Marches F, Fortini D and Brygoo Y (1995). Boty, a long-terminal-repeat retroelement in the phytopathogenic fungus Botrytis cinerea. Appl Environ Microbiol 61: 103–108

    CAS  PubMed  Google Scholar 

  8. Neuveglise C, Sarfati J, Latge J-P and Paris S (1996). Afut1, a retrotransposon-like element from Aspergillus fumigatus. Nucleic Acids Res 24: 1428–1434

    Article  CAS  PubMed  Google Scholar 

  9. Murata HY (2000). A marY1, a member of the gypsy group of long terminal repeat retroelements from the ectomycorrhizal basidiomycete Tricholoma matsutake. Appl Environ Microbiol 66: 3642–3645

    Article  CAS  PubMed  Google Scholar 

  10. Goodwin TJ and Poulter RT (2001). The diversity of retrotransposons in the yeast Cryptococcus neoformans. Yeast 18: 865–880

    Article  CAS  PubMed  Google Scholar 

  11. Ellis WO, Smith JP, Simpson JP and Oldham JH (1991). Aflatoxin in food: occurrence, biosynthesis, effects on organisms, detection, and methods of control. Crit Rev Food Sci Nutr 30: 403–439

    Article  CAS  PubMed  Google Scholar 

  12. Cotty PJ, Bayman DS, Egel DS and Elias KS (1994). Powell, K (eds) The Genus Aspergillus, pp 1–27. Plenum Press, New York, NY

    Google Scholar 

  13. McAlpin CE and Mannarelli B (1995). Construction and characterization of a DNA probe for distinguishing strains of Aspergillus flavus. Appl Environ Microbiol 61: 1068–1072

    CAS  PubMed  Google Scholar 

  14. Okabura PA, Tibbot BK, Tarun AS, McAlpin CA and Hua SST (2003). Partial retrotransposon-like DNA sequence in the genomic clone of Aspergillus flavus, pAF28. Mycol Res 107: 841–846

    Article  Google Scholar 

  15. Adye J and Mateles RI (1964). Incorporation of labeled compounds into aflatoxins. Biochimica et Biophysica Acta 86: 418–420

    CAS  PubMed  Google Scholar 

  16. Bingham PM and Zachar Z (1989). Retrotransposons and the FB transposons from Drosophila melanogaster. In: Berg, DE and Howe, MM (eds) Mobile DNA, pp 485–502. American Society for Microbiology, Washington DC

    Google Scholar 

  17. Nakayashiki H, Matsuo H, Chuma I, Ikeda K, Betsuyaku S, Kusaba M, Tosa Y and Mayama S (2001). Pyret, a Ty3/Gypsy retrotransposon in Magnaporthe grisea contains an extra domain between the nucleocapsid and protease domains. Nucleic Acids Res 29: 4106–4113

    Article  CAS  PubMed  Google Scholar 

  18. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W and Lipman DJ (1997). Gapped BLAST and PSI-BLAST: a new generation of protein search programs. Nucleic Acids Res 25: 3389–3402

    Article  CAS  PubMed  Google Scholar 

  19. Malik HS and Eickbush TH (2001). Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retransposable elements and retroviruses. Genome Res 11: 1187–1197

    Article  CAS  PubMed  Google Scholar 

  20. Malik HS and Eickbush TH (1999). Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73: 5186–5190

    CAS  PubMed  Google Scholar 

  21. Koonin EV, Zhou S and Lucchesi JC (1995). The chromo superfamily: new members, duplication of the chromodomain and possible role in delivering transcription regulators to chromatin. Nucleic Acids Res 23: 4229–4233

    Article  CAS  PubMed  Google Scholar 

  22. Curcio MJ and Morse RH (1996). Tying together integration and chromatin. Trends Genet 12: 436–438

    Article  CAS  PubMed  Google Scholar 

  23. Nielsen ML, Hermansen TD and Aleksenko A (2001). A family of DNA repeats in Aspergillus nidulans has assimilated degenerated retrotransposons. Mol Genet Genomics 265: 883–887

    Article  CAS  PubMed  Google Scholar 

  24. Paris S and Latge JP (2001). Afut2, a new family of degenerate gypsy-like retrotransposon from Aspergillus fumigatus. Med Mycol 39: 195–198

    CAS  PubMed  Google Scholar 

  25. Bayman P and Cotty PJ (1993). Genetic diversity in Aspergillus flavus: association with aflatoxin production and morphology. Can J Bot 71: 23–31

    Article  CAS  Google Scholar 

  26. Wicklow DT, McAlpin CE and Platis CE (1998). Characterization of the Aspergillus flavus population within an Illinois maize field. Mycol Res 102: 263–268

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sui-Sheng T. Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, SS.T., Tarun, A.S., Pandey, S.N. et al. Characterization of AFLAV, a Tf1/Sushi retrotransposon from Aspergillus flavus . Mycopathologia 163, 97–104 (2007). https://doi.org/10.1007/s11046-006-0088-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-006-0088-8

Keywords

Navigation