Skip to main content
Log in

Aromatic plants essential oils activity on Fusarium verticillioides Fumonisin B1 production in corn grain

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

The minimum inhibitory concentration (MIC) of Origanum vulgare, Aloysia triphylla, Aloysia polystachya and Mentha piperita essential oils (EOs) against Fusarium verticillioides M 7075 (F. moniliforme, Sheldon) were assessed, using the semisolid agar antifungal susceptibility (SAAS) technique. O. vulgare, A. triphylla, A. polystachya and M. piperita EOs were evaluated at final concentrations of 10, 20, 40, 50, 100, 200, 250, 500, 1000 and 1500 εl per litre (εl/l) of culture medium. A. triphylla and O. vulgare EOs showed the highest inhibitory effects on F. verticillioides mycelial development. This inhibition was observed at 250 and 500 εl/l for EOs coming from Aloysia triphylla and O. vulgare, respectively. Thus, the effects of EOs on FB1 production were evaluated using corn grain (Zea mays) as substrate. The EOs were inserted on the 5th, 10th, 15th and 20th day of maize postinoculation with a conidia suspension of F. verticillioides. O. vulgare and A. triphylla were applied to give final concentrations of 30 ppm and 45 ppm, respectively. Different effects were observed in the toxicogenicity at the 20th day treatment. The O. vulgare EO decreased the production level of FB1 (P < 0.01) while A. triphyla EO increased it (P < 0.001) with respect to those obtained in the inoculated maize, not EOs treated. Results obtained in the present work indicate that fumonisin production could be inhibited or stimulated by some constituents of EOs coming from aromatic plants. Further studies should be performed to identify the components of EOs with modulatory activity on the growth and fumonisins production of Fusarium verticillioides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blackwell BA, Edwards OE, Fruchier A, ApSimon JW, Miller JD. NMR structural studies of fumonisin B1 and related compounds from Fusarium moniliforme. Adv. Exp. Med. Biol 1996; 392: 75–91.

    PubMed  CAS  Google Scholar 

  2. Casado JM, Theumer MG, Masih DT, Rubinstein HR. Experimental subchronic mycotoxicoses in mice. Individual and combined effects of dietary exposure to fumonisins and aflatoxin B1. Food Chem Toxicol 2001; 29(6): 89–96.

    Google Scholar 

  3. Hengstler JG, Van de Burg B, Steinberg P, Oesch F. Inter-species differences in cancer susceptibility and toxicity. Drug Metab Rev 1999; 31: 917–970.

    Article  PubMed  CAS  Google Scholar 

  4. Voss KA, Plattner RD, Bacon CW, Norred WP. Comparative sudies of hepatotoxicity and fumonisin B1 and B2 content of water and chloroform /methanol extracts of Fusarium moniliforme strain MRC 826 culture material. Mycopathologia 1990; 112: 81–92.

    Article  PubMed  CAS  Google Scholar 

  5. Gonzales H, Martinez EJ, Pacin AM, Pacin SL, Resnik SL, Sydenham EW. Natural co-occurence of fumonisins, deoxynivalenol, zearalenone and aflatoxins in field trial corn in Argentina. Food Addit Contam 1999; 16: 565–569.

    Google Scholar 

  6. Machinski Junior M, Soares LM. Fumonisins B1 and B2 in Brazilian corn-based food products. Food Addit Contam 2000; 17: 875–879.

    CAS  Google Scholar 

  7. Etcheverry M, Nesci A, Barros G, Chulze S. Occurrence of Aspergillus section Flavi and aflatoxin B1 in corn genotypes and corn meal in Argentina. Mycopathologia 1999; 147: 37–41.

    Article  PubMed  CAS  Google Scholar 

  8. Chulze SN, Ramirez ML, Torres A, Leslie JF. Genetic variation in Fusarium section Liseola from No-till maize in Argentina. Appl Environ Microbiol 2000; 66: 5312–5315.

    Article  PubMed  CAS  Google Scholar 

  9. Christensen CM, Sauer DB. Microflora. In Christensen CM ed. Storage of Cereal Grains and their Products. American Association of Cereal St. Paul, MN: Chemists, Inc., 1982: 219–241.

    Google Scholar 

  10. Shelef LA. Antimicrobial effects of spices. J Food Safety 1984; 6: 29–44.

    CAS  Google Scholar 

  11. Beuchat LR, Golden DA. Antimicrobials occurring naturally in foods. Food Technol 1989; 43: 134–142.

    CAS  Google Scholar 

  12. Montes-Belmont R, Carvajal M. Control of Aspergillus flavus in maize with plant essential oil and their components. J Food Prot 1998; 61: 616–619.

    PubMed  CAS  Google Scholar 

  13. Paster N, Juven BJ, Shaaya E, Menasherov M, Nitzan R, Weisslowicz H, Ravid U. Inhibitory effect of oregano and thyme essential oils and their components on moulds and foodborne bacteria. Lett App Microbiol 1990; 11: 33–37.

    Article  Google Scholar 

  14. Paster N, Menasherov M, Ravid U, Juven B. Antifungal activity of oregano and thyme essential oils applied as fumigants against fungi attacking stored grain. J Food Prot 1995; 58: 81–85.

    CAS  Google Scholar 

  15. Pattnaik S, Subramanyan VR, Kole CR. Antibacterial and antifungal activity of ten essential oils in vitro. Microbios 1996; 86: 237–246.

    PubMed  CAS  Google Scholar 

  16. Zeringue HJ Jr. Identification and effects of maize silk volatiles on cultures of Aspergillus flavus. J Agric Food Chem 2000; 48: 921–925.

    Article  PubMed  CAS  Google Scholar 

  17. Rai MK, Qureshi S, Pandey AK. In vitro susceptibility of opportunistic Fusarium spp. to essential oils. Mycoses 1999; 42: 97–101.

    Article  PubMed  CAS  Google Scholar 

  18. Pattnaik S, Subramanyan VR, Bapaji M, Kole CR. Antibacterial and antifungal activity of aromatic constituents essential oils. Microbios 1997; 89: 39–46.

    PubMed  CAS  Google Scholar 

  19. Craveiro AA, Matos FJA, Alencar JW. Kovat’s indices as preselection routine in Mass Spectra Library Search of volatiles. J Nat Prod 1984; 47: 890–892.

    Article  Google Scholar 

  20. Adams, RP. Identification of Essential Oil Components by Gas Chromatography and Mass Spectroscopy. Carol Stream, IL: Allured Publ. Corp., 1995.

    Google Scholar 

  21. Chulze SN, Ramirez ML, Pascale M, Visconti A. Fumonisin production by, and mating populations of, Fusarium section Liseola isolates from maize in Argentina. Mycol Res 1998; 102: 141–144.

    Article  CAS  Google Scholar 

  22. Chulze SN, Etcheverry MG, Lecumberry SE, Magnoli CE, Dalcero AM, Ramirez ML, Pascale M, Rodriguez MI. Fumonisin production on irradiated corn kernels: Effect of inoculum size. J Food Prot 1999; 62(7): 814–817.

    PubMed  CAS  Google Scholar 

  23. Solfrizzo M, Visconti A, Avantaggiato G, Torres A, Chulze S. In vitro and in vivo studies to asses the effectivenees of cholestyramine as a bindind agent for fumonisins. Mycopathologia 2001; 151: 147–153.

    Article  PubMed  CAS  Google Scholar 

  24. Provine H, Hadley S. Preliminary evaluation of a semisolid agar antifungal susceptibility test for yeasts and molds. J Clinical Microb 2000; 38(2): 537–541.

    CAS  Google Scholar 

  25. Voss KA, Riley RT, Bacon CW, Chamberlain WJ, Norred WP. Subchronic toxic effects of Fusarium moniliforme and fumonisin B1 in rats and mice. Nat Toxins 1996; 4: 16–23.

    PubMed  CAS  Google Scholar 

  26. Shephard GS, Sydenham EW, Thiel PG, Gelderblom WCA. Quantitative determination of fumonisins B1 and B2 by high-performance liquid chromatography with fluorescence detection. J Liq Chromatogr 1990; 13: 2077–2087.

    CAS  Google Scholar 

  27. Kokkini S. In: Macrae R, Robinson R, Sadler M, Fullerlove G, eds. Encyclopaedia of Food Science, Food Technology and Nutrition. London: Academis Press 1994.

    Google Scholar 

  28. Kokkini, S. In: Padulosi, S. ed. Ed. IPGRI, Roma 1997

  29. Adam K, Sivropoulou A, Kokkini S, Lanaras T, Arsenakis M. Antifungal activities of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifolia, and Salvia fucticosa essential oils against human pathogenic fungi. J Agric Food Chem 1997; 46: 1739–1745.

    Google Scholar 

  30. Daferera DJ, Ziogas BN, Polissiu MG. GC-MS analysis of essential oils from some Greek aromatic and their fungitoxity on Penicillium digitatum. J Agric Food Chem 2000; 48(6): 2576–2581.

    Article  PubMed  CAS  Google Scholar 

  31. Farag RS, Daw ZY, Abo-Raya SH. Influence of some spice essential oils on Aspergillus parasiticus growth and production of aflatoxins in a synthetic medium. 1989; 54: 74–76.

    CAS  Google Scholar 

  32. Hitokoto H, Morozumis S, Wauke T, Sakai S, Kurata T. Inhibitory effects of spices on growth and toxin production of toxicogenic fungi. Appl Envirom Microbiol 1980; 39: 818–882.

    CAS  Google Scholar 

  33. Zambonelli A, Zechini D’Aulerio A, Bianchi A, Albasini A. Effects of essential oils on phytopathogenic fungi in vitro. J Phytophatology 1996; 144: 491–494.

    CAS  Google Scholar 

  34. Basilico MZ, Basilico JC. Inhibitory effects of some spice essential oils on Aspergillus ochraceus NRRL 3174 growth and ochratoxin A production. Lett Appl Microbiol 1999; 29: 238–241.

    Article  PubMed  CAS  Google Scholar 

  35. Mahmoud AL. Antifungal action and antiaflatoxigenic properties of some essential oils constituents. Lett Appl Microbiol 1994; 19(2): 110–113.

    PubMed  CAS  Google Scholar 

  36. Kurita N, Koike S. Syenergetic antimicrobial effect of ethanol, sodium chloride, acetic acid and essential oils components. Agric Biol Chem 1983; 47: 67–75.

    CAS  Google Scholar 

  37. Baratta MT, Dorman HJD, Deans SG, Figueiredo AC, Barroso JG, Ruberto G. Antimicrobial and antioxidant properties of some commercial essential oils. Flav Frag J 1998; 13: 235–244.

    CAS  Google Scholar 

  38. Zygadlo AJ, Juliani HR. Bioactivity of essential oil components. Currents Topics in Phytochemistry 2000; 3: 203–214.

    CAS  Google Scholar 

  39. Velluti A, Sanchis V, Ramos AJ, Egido J, Marín S. Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. Int J Food Microb 2003; 2757, 1–10.

    Google Scholar 

  40. Karapinar M. Inhibitory effects of anethole and eugenol on the growth and toxin production of Aspergillus parasiticus. Int J Food Microbiol 1990; 10(3–4): 193–199.

    PubMed  CAS  Google Scholar 

  41. Ruberto G, Baratta MT. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem 2000; 69: 167–174.

    Article  CAS  Google Scholar 

  42. Jayashree T, Subramanyam C. Antiaflatoxigenic activity of eugenol is due to inhibition of lipid peroxidation. Lett Appl Microbiol 1999; 28: 179–183.

    Article  PubMed  CAS  Google Scholar 

  43. Georgiou CD, Zervoudakis G, Petropoulou KP. Ascorbic acid might play a role in the sclerotial differentiation of Sclerotium rolfsii. Mycologia 2003; 95: 308–316.

    CAS  Google Scholar 

  44. Zygadlo JA, Lamarque AL, Grosso NR, Maestri DM. Empleo de aceites esenciales como antioxidantes naturales. Grasas y Aceites 1995; 46(4–5): 285–288.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Rubinstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, A.G., Theumer, M.G., Zygadlo, J.A. et al. Aromatic plants essential oils activity on Fusarium verticillioides Fumonisin B1 production in corn grain. Mycopathologia 158, 343–349 (2004). https://doi.org/10.1007/s11046-005-3969-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-005-3969-3

Key words

Navigation