Mycopathologia

, Volume 158, Issue 3, pp 325–335

Development of a method to detect and quantify Aspergillus fumigatus conidia by quantitative PCR for environmental air samples

  • James J. Mcdevitt
  • Peter S. J. Lees
  • William G. Merz
  • Kellogg J. Schwab
Article

Abstract

Exposure to Aspergillus fumigatus is linked with respiratory diseases such as asthma, invasive aspergillosis, hypersensitivity pneumonitis, and allergic bronchopulmonary aspergillosis. Molecular methods using quantitative PCR (qPCR) offer advantages over culture and optical methods for estimating human exposures to microbiological agents such as fungi. We describe an assay that uses lyticase to digest A. fumigatus conidia followed by TaqMan™ qPCR to quantify released DNA. This method will allow analysis of airborne A. fumigatus samples collected over extended time periods and provide a more representative assessment of chronic exposure. The method was optimized for environmental samples and incorporates: single tube sample preparation to reduce sample loss, maintain simplicity, and avoid contamination; hot start amplification to reduce non-specific primer/probe annealing; and uracil-N-glycosylase to prevent carryover contamination. An A. fumigatus internal standard was developed and used to detect PCR inhibitors potentially found in air samples. The assay detected fewer than 10 A. fumigatus conidia per qPCR reaction and quantified conidia over a 4−log10 range with high linearity (R2 > 0.99) and low variability among replicate standards (CV=2.0%) in less than 4 h. The sensitivity and linearity of qPCR for conidia deposited on filters was equivalent to conidia calibration standards. A. fumigatus DNA from 8 isolates was consistently quantified using this method, while non-specific DNA from 14 common environmental fungi, including 6 other Aspergillus species, was not detected. This method provides a means of analyzing long term air samples collected on filters which may enable investigators to correlate airborne environmental A. fumigatus conidia concentrations with adverse health effects.

Keywords

airborne fungi Aspergillus fumigatus conidia filter air monitoring quantitative PCR sample inhibition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burge, HA, Otten, JA 1999

    Fungi

    Macher, JM eds. Bioaerosols: Assessment and Control. Cincinnati.ACGIHOhio19.119.13
    Google Scholar
  2. Wijnands, LM, Deisz, WD, Leusden, FM 2000Marker antigens to assess exposure to molds and their allergens. I. Aspergillus fumigatusAllergy55850855PubMedCrossRefGoogle Scholar
  3. Greenberger PA. Allergic bronchopulmonary aspergillosis. In: Adkinson NF, Ellis EE, Yunginger JW, Reed CE, Busse WW, eds. Allergy: Principles and practice. Mosby-Year Book Inc., 2000: 981–992.Google Scholar
  4. Vernon, DR, Allan, F 1980Environmental factors in allergic bronchopulmonary aspergillosis.Clin Allergy10217227PubMedGoogle Scholar
  5. Cruz-Perez, P, Buttner, MP, Stetzenbach, LD 2001Detection and quantitation of Aspergillus fumigatus in pure culture using polymerase chain reactionMol Cell Probes158188PubMedGoogle Scholar
  6. Denning, DW 1998Invasive aspergillosisClin Infect Dis26781803PubMedGoogle Scholar
  7. Denning, DW 1996Therapeutic outcome in invasive aspergillosisClin Infect Dis23608615PubMedGoogle Scholar
  8. Latge, JP 1999Aspergillus fumigatus and aspergillosisClin Microbiol Rev12310350PubMedGoogle Scholar
  9. Griffiths, WD, DeCosemo, GAL 1994The assesment of bioaerosols-A critical reviewJ Aerosol Sci2514251458Google Scholar
  10. Mukoda, TJ, Todd, LA, Sobsey, MD 1994PCR and gene probes for detecting bioaerosols.J Aerosol Sci2515231532Google Scholar
  11. Chazalet, V, Debeaupuis, JP, Sarfati, J, Lortholary, J, Ribaud, P, Shah, P, Cornet, M, Vu, TH, Gluckman, E, Brucker, G, Latge, JP 1998Molecular typing of environmental and patient isolates of Aspergillus fumigatus from various hospital settingsJ Clin Microbiol3614941500PubMedGoogle Scholar
  12. Wu, PC, Su, HJ, Ho, HM 2000A comparison of sampling media for environmental viable fungi collected in a hospital environmentEnviron Res82253257PubMedCrossRefGoogle Scholar
  13. Laitinen, S, Linnainmaa, M, Laitinen, J, Kiviranta, H, Reiman, M, Liesivuori, J 1999Endotoxins and IgG antibodies as indicators of occupational exposure to the microbial contaminants of metal-working fluidsInt Arch Occup Environ Health72443450PubMedCrossRefGoogle Scholar
  14. Rath, PM, Ansorg, R 1997Value of environmental sampling and molecular typing of aspergilli to assess nosocomial sources of aspergillosisJ Hosp Infect374753PubMedCrossRefGoogle Scholar
  15. Leenders, A, Belkum, A, Janssen, S, Marie, S, Kluytmans, J, Wielenga, J, Lowenberg, B, Verbrugh, H 1996Molecular epidemiology of apparent outbreak of invasive aspergillosis in a hematology wardJ Clin Microbiol34345351PubMedGoogle Scholar
  16. Hospenthal, DR, Kwon-Chung, KJ, Bennett, JE 1998Concentrations of airborne Aspergillus compared to the incidence of invasive aspergillosis: lack of correlationMed Mycol36165168PubMedCrossRefGoogle Scholar
  17. Thio, CL, Smith, D, Merz, WG, Streifel, AJ, Bova, G, Gay, L, Miller, CB, Perl, TM 2000Refinements of environmental assessment during an outbreak investigation of invasive aspergillosis in a leukemia and bone marrow transplant unitInfect Control Hosp Epidemiol211823PubMedGoogle Scholar
  18. Schwab, KJ, Leon, R, Sobsey, MD 1996Immunoaffinity concentration and purification of waterborne enteric viruses for detection by reverse transcriptase PCRAppl Environ Microbiol6220862094PubMedGoogle Scholar
  19. Haugland, RA, Vesper, SJ, Wymer, LJ 1999Quantitative measurement of Stachybotrys chartarum conidia using real time detection of PCR products with the TaqMan (TM)fluorogenic probe systemMol Cell Probes13329340PubMedCrossRefGoogle Scholar
  20. Kuske, CR, Banton, KL, Adorada, DL, Stark, PC, Hill, KK, Jackson, PJ 1998Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soilAppl Environ Microbiol6424632472PubMedGoogle Scholar
  21. Schwab, KJ, Neill, FH, Fankhauser, RL, Daniels, NA, Monroe, SS, Bergmire-Sweat, DA, Estes, MK, Atmar, RL 2000Development of methods to detect “Norwalk-like viruses” (NLVs) and hepatitis A virus in delicatessen foods: application to a food-borne NLV outbreakAppl Environ Microbiol66213218PubMedCrossRefGoogle Scholar
  22. Cruz-Perez, P, Buttner, MP, Stetzenbach, LD 2001Specific detection of Stachybotrys chartarum in pure culture using quantitative polymerase chain reactionMol Cell Probes15129138PubMedGoogle Scholar
  23. Costa, C, Vidaud, D, Olivi, M, Bart-Delabesse, E, Vidaud, M, Bretagne, S 2001Development of two real-time quantitative TaqMan PCR assays to detect circulating Aspergillus fumigatus DNA in serumJ Microbiol Methods44263269PubMedCrossRefGoogle Scholar
  24. Roe, JD, Haugland, RA, Vesper, SJ, Wymer, LJ 2001Quantification of Stachybotrys chartarum conidia in indoor dust using real time, fluorescent probe-based detection of PCR productsJ Expo Anal Environ Epidemiol111220PubMedCrossRefGoogle Scholar
  25. Haugland, RA, Heckman, JL 1998Identification of putative sequence specific PCR primers for detection of the toxigenic fungal species Stachybotrys chartarumMol Cell Probes12387396PubMedCrossRefGoogle Scholar
  26. Velegraki, A, Kambouris, M, Kostourou, A, Chalevelakis, G, Legakis, NJ 1999Rapid extraction of fungal DNA from clinical samples for PCR amplification.Med Mycol376973PubMedCrossRefGoogle Scholar
  27. Haugland, RA, Heckman, JL, Wymer, LJ 1999Evaluation of different methods for the extraction of DNA from fungal conidia by quantitative competitive PCR analysisJ Microbiol Methods37165176PubMedCrossRefGoogle Scholar
  28. Muller, FM, Werner, KE, Kasai, M, Francesconi, A, Chanock, SJ, Walsh, TJ 1998Rapid extraction of genomic DNA from medically important yeasts and filamentous fungi by high-speed cell disruptionJ Clin Microbiol3616251629PubMedGoogle Scholar
  29. Burik, JA, Schreckhise, RW, White, TC, Bowden, RA, Myerson, D 1998Comparison of six extraction techniques for isolation of DNA from filamentous fungiMed Mycol36299303PubMedGoogle Scholar
  30. Loeffler, J, Hebart, H, Schumacher, U, Reitze, H, Einsele, H 1997Comparison of different methods for extraction of DNA of fungal pathogens from cultures and bloodJ Clin Microbiol3533113312Google Scholar
  31. Loeffler, J, Schmidt, K, Hebart, H, Schumacher, U, Einsele, H 2002Automated extraction of genomic DNA from medically important yeast species and filamentous fungi by using the MagNA Pure LC systemJ Clin Microbiol4022402243PubMedCrossRefGoogle Scholar
  32. Bir, N, Paliwal, A, Muralidhar, K, Reddy, P, Sarma, PU 1995A rapid method for the isolation of genomic DNA from Aspergillus fumigatusPrep Biochem25171181PubMedGoogle Scholar
  33. Haugland, RA, Brinkman, N, Vesper, SJ 2002Evaluation of rapid DNA extraction methods for the quantitative detection of fungi using real-time PCR analysisJ Microbiol Meth50319323CrossRefGoogle Scholar
  34. Sambrook, J, Russell, DW 2001

    Appendix 8. Commonly Used Techniques in Molecular Cloning

    Argentine, J eds. Molecular Cloning a Laboratory ManualCold Spring Harbor Laboratory PressCold Spring HarborA8.1A8.54.
    Google Scholar
  35. Turenne, CY, Sanche, SE, Hoban, DJ, Karlowsky, JA, Kabani, AM 1999Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis systemJ Clin Microbiol3718461851PubMedGoogle Scholar
  36. Loeffler, J, Henke, N, Hebart, H, Schmidt, D, Hagmeyer, L, Schumacher, U, Einsele, H 2000Quantification of fungal DNA by using fluorescence resonance energy transfer and the light cycler systemJ Clin Microbiol38586590PubMedGoogle Scholar
  37. Einsele, H, Hebart, H, Roller, G, Loffler, J, Rothenhofer, I, Muller, CA, Bowden, RA, Burik, J, Engelhard, D, Kanz, L, Schumacher, U 1997Detection and identification of fungal pathogens in blood by using molecular probesJ Clin Microbiol3513531360PubMedGoogle Scholar
  38. Peberby, JF 1990

    Fungal cell walls—a review

    Kuhn, PJTrinci, APJJung, MJGoosey, MWCooping, LG eds. Biochemistry of Cell Walls and Membranes in FungiSpringer-VerlagGermany530
    Google Scholar
  39. Nobel, JG, Klis, FM, Munnik, T, Priem, J, Den, EH 1990An assay of relative cell wall porosity in Saccharomyces cerevisiae, Kluyveromyces lactis and Schizosaccharomyces pombeYeast6483490PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • James J. Mcdevitt
    • 1
  • Peter S. J. Lees
    • 1
  • William G. Merz
    • 2
  • Kellogg J. Schwab
    • 1
  1. 1.Bloomberg School of Public Health, Department of Environmental Health Sciences, Division of Environmental Health EngineeringThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Pathology School of MedicineThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations