Skip to main content

Direction finding based on iterative adaptive approach utilizing weighted \(\ell _2\)-norm penalty for acoustic vector sensor array

Abstract

It is well known that the iterative adaptive approach (IAA) is an effective direction-of-arrival (DOA) estimation method for large aperture array, high signal-to-noise ratio (SNR) and large source separation. However, its derivation is obtained by minimizing a weighted least square cost function without considering the sparsity of solution, it cannot work properly in low SNR, small aperture array and small source separation scenarios. In this paper, to address this problem, the weighted \(\ell _2\)-norm based IAA, namely as WIAA, is proposed to provide accurate DOA utilizing acoustic vector sensor array (AVSA). First, to improve the sparsity of solution for IAA, the auxiliary cost function with respect to the signal, which is penalized by the \(\ell _{2}\)-norm with a user parameter, is reconstructed based on the spatial sparsity of signal. Then, to obtain an analytical solution, the Majorization-minimization algorithm is used to turn the penalty term with a user parameter into a weighted \(\ell _2\)-norm one. Finally, the sparse solution is quantified by the Frobenius norm properties. Several simulation and experimental results verify the superiority of the WIAA method compared to some other existing algorithms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Shang, Z., Zhang, W., Zhang, G., Zhang, X., Zhang, L., & Wang, R. (2020). A study on mems vector hydrophone and its orientation algorithm. Sensor Review, 40(2), 191–201.

    Article  Google Scholar 

  2. Najeem, S., Kiran, K., Malarkodi, A., & Latha, G. (2017). Open lake experiment for direction of arrival estimation using acoustic vector sensor array. Applied Acoustics, 119, 94–100.

    Article  Google Scholar 

  3. Sun, D., Ma, C., Yang, T., Mei, J., & Shi, W. (2020). Improving the performance of a vector sensor line array by deconvolution. IEEE Journal of Oceanic Engineering, 43(3), 1063–1077.

    Article  Google Scholar 

  4. Ramamohan, K. N., Comesaña, D. F., & Leus, G. (2018). Uniaxial acoustic vector sensors for direction-of-arrival estimation. Journal of Sound and Vibration, 437, 276–291.

    Article  Google Scholar 

  5. Wu, Y., Hu, Z., Luo, H., & Hu, Y. (2014). Source number detectability by an acoustic vector sensor linear array and performance analysis. IEEE Journal of Oceanic Engineering, 39(4), 769–778.

    Article  Google Scholar 

  6. Qi, Y., Zhou, S., Liang, Y., Du, S., & Liu, C. (2020). Passive broadband source depth estimation in the deep ocean using a single vector sensor. The Journal of the Acoustical Society of America, 148(1), EL88–EL92.

    Article  Google Scholar 

  7. Shi, S.-G., Li, Y., Zhu, Z.-R., & Shi, J. (2019). Real-valued robust doa estimation method for uniform circular acoustic vector sensor arrays based on worst-case performance optimization. Applied Acoustics, 148, 495–502.

    Article  Google Scholar 

  8. Agarwal, A., Agrawal, M., & Kumar, A. (2020). Higher-order-statistics-based direction-of-arrival estimation of multiple wideband sources with single acoustic vector sensor. IEEE Journal of Oceanic Engineering, 45(4), 1439–1449.

    Article  Google Scholar 

  9. Zhang, J., Xu, X., Chen, Z., Bao, M., Zhang, X.-P., & Yang, J. (2020). High-resolution doa estimation algorithm for a single acoustic vector sensor at low snr. IEEE Transactions on Signal Processing, 68, 6142–6158.

    MathSciNet  Article  Google Scholar 

  10. Fauziya, F., Lall, B., & Agrawal, M. (2018). Impact of vector sensor on underwater acoustic communications system. IET Radar, Sonar & Navigation, 12(12), 1500–1508.

    Article  Google Scholar 

  11. Naeem, K., Chung, Y., & Kwon, I.-B. (2017). Highly sensitive two-dimensional bending vector sensor using an elliptic two-core pcf. IEEE Photonics Technology Letters, 30(3), 273–276.

    Article  Google Scholar 

  12. Stinco, P., Tesei, A., Ferri, G., Biagini, S., Micheli, M., Garau, B., LePage, K. D., Troiano, L., Grati, A., & Guerrini, P. (2020). Passive acoustic signal processing at low frequency with a 3-d acoustic vector sensor hosted on a buoyancy glider. IEEE Journal of Oceanic Engineering, 46(1), 283–293.

    Article  Google Scholar 

  13. Khan, S., & Wong, K. T. (2020). A six-component vector sensor comprising electrically long dipoles and large loops-to simultaneously estimate incident sources’ directions-of-arrival and polarizations. IEEE Transactions on Antennas and Propagation, 68(8), 6355–6363.

  14. Li, S., Yang, S., & Liang, J. (2020). Recognition of ships based on vector sensor and bidirectional long short-term memory networks. Applied Acoustics, 164, 107248.

    Article  Google Scholar 

  15. Nehorai, A., & Paldi, E. (1994). Acoustic vector-sensor array processing. IEEE Transactions on signal processing, 42(9), 2481–2491.

    Article  Google Scholar 

  16. Hawkes, M., & Nehorai, A. (1998). Acoustic vector-sensor beamforming and capon direction estimation. IEEE transactions on signal processing, 46(9), 2291–2304.

    Article  Google Scholar 

  17. Wang, B., Chen, F., & Ge, H. (2020). Subspace projection semi-real-valued mvdr algorithm based on vector sensors array processing. Neural Computing and Applications, 32(1), 173–181.

    Article  Google Scholar 

  18. Xiaofei, Z., Ming, Z., Han, C., & Jianfeng, L. (2014). Two-dimensional doa estimation for acoustic vector-sensor array using a successive music. Multidimensional Systems and Signal Processing, 25(3), 583–600.

    MathSciNet  Article  Google Scholar 

  19. Liu, A., Yang, D., Shi, S., Zhu, Z., & Li, Y. (2019). Augmented subspace music method for doa estimation using acoustic vector sensor array. IET Radar, Sonar & Navigation, 13(6), 969–975.

    Article  Google Scholar 

  20. Malioutov, D., Cetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8), 3010–3022.

    MathSciNet  Article  Google Scholar 

  21. Shi, S., Li, Y., Yang, D., Liu, A., & Zhu, Z. (2020). Doa estimation of coherent signals based on the sparse representation for acoustic vector-sensor arrays. Circuits, Systems, and Signal Processing, 39, 969–982.

    MATH  Google Scholar 

  22. Shi, S., Li, Y., Yang, D., Liu, A., & Shi, J. (2020). Sparse representation based direction-of-arrival estimation using circular acoustic vector sensor arrays. Digital Signal Processing, 99, 102675.

    Article  Google Scholar 

  23. Yardibi, T., Li, J., Stoica, P., Xue, M., & Baggeroer, A. B. (2010). Source localization and sensing: a nonparametric iterative adaptive approach based on weighted least squares. IEEE Transactions on Aerospace and Electronic Systems, 46(1), 425–443.

    Article  Google Scholar 

  24. Zhang, Y., Jakobsson, A., Zhang, Y., Huang, Y., & Yang, J. (2018). Wideband sparse reconstruction for scanning radar. IEEE Transactions on Geoscience and Remote Sensing, 56(10), 6055–6068.

    Google Scholar 

  25. Huang, P., Xia, X.-G., Liu, X., Jiang, X., Chen, J., & Liu, Y. (2019). A novel baseline estimation method for multichannel hrsw sar system. IEEE Geoscience and Remote Sensing Letters, 16(12), 1829–1833.

    Article  Google Scholar 

  26. Malek-Mohammadi, M., Babaie-Zadeh, M., & Skoglund, M. (2015). Performance guarantees for schatten-p quasi-norm minimization in recovery of low-rank matrices. Signal Processing, 114, 225–230.

    Article  Google Scholar 

  27. Sun, Y., Babu, P., & Palomar, D. P. (2016). Majorization-minimization algorithms in signal processing, communications, and machine learning. IEEE Transactions on Signal Processing, 65(3), 794–816.

    MathSciNet  Article  Google Scholar 

  28. Tan, X., Roberts, W., Li, J., & Stoica, P. (2010). Sparse learning via iterative minimization with application to mimo radar imaging. IEEE Transactions on Signal Processing, 59(3), 1088–1101.

    MathSciNet  Article  Google Scholar 

  29. Jennings, A., & McKeown, J. J. (1992). Matrix computation. New York: John Wiley & Sons Inc.

    MATH  Google Scholar 

  30. Petersen, K., & Pedersen, M. (2012). The matrix cookbook. Technical Univ. Denmark, Kongens Lyngby, Denmark, Tech. Rep, vol. 3274, version 20121115.

  31. Zhao, A., Ma, L., Hui, J., Zeng, C., & Bi, X. (2018). Open-lake experimental investigation of azimuth angle estimation using a single acoustic vector sensor. Journal of Sensors, 2018, 1–11.

    Google Scholar 

  32. Hawkes, M., & Nehorai, A. (2001). Acoustic vector-sensor correlations in ambient noise. IEEE Journal of Oceanic Engineering, 26(3), 337–347.

    Article  Google Scholar 

  33. Wu, X., Zhu, W.-P., Yan, J., & Zhang, Z. (2018). Two sparse-based methods for off-grid direction-of-arrival estimation. Signal Processing, 142, 87–95.

    Article  Google Scholar 

  34. Xu, Z., Chang, X., Xu, F., & Zhang, H. (2012). \({ \ell _ {1/2}}\) regularization: a thresholding representation theory and a fast solver. IEEE Transactions on Neural Networks and Learning Systems, 23(7), 1013–1027.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China under Grant 61531015 and 62101176, the National Key Research and Development Program of China under Grant 2016XFC1400203, The Science, Technology and Innovation Commission of Shenzhen Municipality under Grant JCYJ20180306170932431, the Research Project of Guizhou University for Talent Introduction (no. [2020]61), and the Cultivation Project of Guizhou University (no. [2019]56).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wentao Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Tan, W., Shi, W. et al. Direction finding based on iterative adaptive approach utilizing weighted \(\ell _2\)-norm penalty for acoustic vector sensor array. Multidim Syst Sign Process (2021). https://doi.org/10.1007/s11045-021-00797-6

Download citation

Keywords

  • Weighted \(\ell _2\)-norm penalty
  • Iterative adaptive approach (IAA)
  • Direction of arrival (DOA)
  • Acoustic vector sensor array (AVSA)