Skip to main content
Log in

Image denoising via an adaptive weighted anisotropic diffusion

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper introduces an adaptive weighted anisotropic diffusion model for image denoising. A simple but efficient patch-based diffusivity function based on the idea of patch similarity is first presented to capture the similarity of the geometrical structures between two adjacent regions. Then, the patch-based diffusivity function is combined with the local diffusivity function to construct an adaptive weighted anisotropic diffusion model whose local-based diffusion component and patch-based diffusion component are combined for image denoising. Moreover, a variable time step is designed to address the problem of over-smoothness. Experimental results are provided to demonstrate that the proposed model outperforms some representative anisotropic diffusion models with regard to both quantitative metrics and visual performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Blomgren, P., Chan, T.F., Mulet P., Wong, C.K., Total variation image restoration: numerical methods and extensions. In Proceedings of IEEE International Conference on Image Processing (ICIP), Santa Barbara, pp. 384–387.

  • Black, M., Sapiro, G., Marimont, D., & Heeger, D. (1998). Robust anisotropic diffusion. IEEE Transactions on Image Processing, 7, 421–432.

    Article  Google Scholar 

  • Buades, A., Coll, B., Morel J.M. (2005) A non-local algorithm for image denoising. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Spain, pp. 60–65

  • Catte, F., Lions, P., & Morel, J. (1992). Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis, 29, 182–193.

    Article  MathSciNet  Google Scholar 

  • Chambolle, A., & Lions, P. (1997). Image recovery via total variation minimization and related problems. Numerische Mathematik, 76, 167–188.

    Article  MathSciNet  Google Scholar 

  • Chen, Q., Sun, Q. S., & Xia, D. S. (2010). Homogeneity similarity based image denoising. Pattern Recognition, 43, 4089–4100.

    Article  Google Scholar 

  • Chen, K. (2005). Adaptive smoothing via contextual and local discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1552–1567.

    Article  Google Scholar 

  • Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse \(3\)-D transform domain collaborative filtering. IEEE Transactions on Image Processing, 16, 2080–2095.

    Article  MathSciNet  Google Scholar 

  • Foi, A., & Boracchi, G. (2016). Foveated nonlocal self-similarity. International Journal of Computer Vision, 120, 78–110.

    Article  MathSciNet  Google Scholar 

  • Gilboa, G., Sochen, N., & Zeevi, Y. Y. (2002). Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Transactions on Image Processing, 11, 689–703.

    Article  Google Scholar 

  • Gilboa, G., Sochen, N., & Zeevi, Y. Y. (2004). Image enhancement and denoising by complex diffusion processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 1020–1036.

    Article  Google Scholar 

  • Gilboa, G., & Osher, S. (2008). Nonlocal operators with applications to image processing. SIAM Journal on Multiscale Modeling & Simulation, 7, 1005–1028.

    Article  MathSciNet  Google Scholar 

  • Guo, Z. C., Sun, J. B., Zhang, D. Z., & Wu, B. Y. (2012). Adaptive Perona-Malik model based on the variable exponent for image denoising. IEEE Transactions on Image Processing, 21, 958–967.

    Article  MathSciNet  Google Scholar 

  • Hajiaboli, M. R. (2011). An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92, 177–191.

    Article  MathSciNet  Google Scholar 

  • Ham, B., Min, D., & Sohn, K. (2012). Robust scale-space filter using second-order partial differential equations. IEEE Transactions on Image Processing, 21, 3937–3951.

    Article  MathSciNet  Google Scholar 

  • He, K. M., Sun, J., & Tang, X. O. (2013). Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1397–1409.

    Article  Google Scholar 

  • Knaus, C., & Zwicker, M. (2015). Dual-domain filtering. SIAM Journal on Imaging Sciences, 8, 1396–1420.

    Article  MathSciNet  Google Scholar 

  • Lysaker, M., & Tai, X. C. (2006). Iterative image restoration combining total variation minimization and a second-order functional. Internationl Journal of Computer Vision, 66, 5–18.

    Article  Google Scholar 

  • Ling, J., & Bovik, A. C. (2002). Smoothing low-SNR molecular images via anisotropic median-diffusion. IEEE Transactions on Medical Imaging, 21, 377–384.

    Article  Google Scholar 

  • Mafi, M., Martin, H., Cabrerizo, M., Andrian, J., & Barreto, A. (2019). A comprehensive survey on impulse and Gaussian denoising filters for digital images. Signal Processing, 157, 236–260.

    Article  Google Scholar 

  • Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629–639.

    Article  Google Scholar 

  • Prasath, V. B. S., Vorotnikov, D., Pelapur, R., Jose, S., Seetharaman, G., & Palaniappan, K. (2015). Multiscale Tikhonov-total variation image restoration using spatially varying edge coherence exponent. IEEE Transactions on Image Processing, 24, 5220–5235.

    Article  MathSciNet  Google Scholar 

  • Rudin, L., Osher, S., & Fatemi, E. (1992). Nonliear total variation based noise removal algorithms. Physica D, 60, 259–268.

    Article  MathSciNet  Google Scholar 

  • Rial, R. M., & Herrero, J. M. (2018). Separable anisotropic diffusion. International Journal of Computer Vision, 126, 651–670.

    Article  MathSciNet  Google Scholar 

  • Nair, R. R., David, E., & Rajagopal, S. (2019). A robust anisotropic diffusion filter with low arithmetic complexity for images. EURASIP Journal on Image and Video Processing, 48, 1–14.

    Google Scholar 

  • Tomasi, C., & Manduchi, R. (1998) Bilateral filtering for gray and color images. In Proceedings of IEEE International Conference on Computer Vision (ICCV), India, pp. 839–846.

  • Tsiotsios, C., & Petrou, M. (2013). On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recognition, 46, 1369–1381.

    Article  Google Scholar 

  • Wang, Y., Zhang, L., & Li, P. (2007). Local variance-controlled forward-and-backward diffusion for image enhancement and noise Reduction. IEEE Transactions on Image Processing, 16, 1854–1864.

    Article  MathSciNet  Google Scholar 

  • Xu, J. T., Jia, Y. Y., Shi, Z. F., & Pang, K. (2016). An improved anisotropic diffusion filter with semi-adaptive threshold for edge preservation. Signal Processing, 119, 80–91.

    Article  Google Scholar 

  • You, Y. L., Xu, W., Tannenbaum, A., & Kaveh, M. (1996). Behavioral analysis of anisotropic diffusion in image processing. IEEE Transactions on Image Processing, 5, 1539–1553.

    Article  Google Scholar 

  • You, Y. L., & Kaveh, M. (2000). Fourth-order partial differential equations for noise removal. IEEE Transactions on Image Processing, 9, 1723–1730.

    Article  MathSciNet  Google Scholar 

  • Yao, W. J., Guo, Z. C., Sun, J. B., Wu, B. Y., & Gao, H. J. (2019). Multiplicative noise removal for texture images based on adaptive anisotropic fractional diffusion equations. SIAM Journal on Imaging Sciences, 12, 839–873.

    Article  MathSciNet  Google Scholar 

  • Zhang, F., Yoo, Y. M., Koh, L. M., & Kim, Y. (2007). Nonliear diffusion in Laplacian pyramid domain for ultrasonic speckle reduction. IEEE Transactions on Medical Imaging, 26, 200–211.

    Article  Google Scholar 

  • Zhang, L., Dong, W., Zhang, D., & Shi, G. (2010). Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recognition, 43, 1531–1549.

    Article  Google Scholar 

  • Zoran D., & Weiss Y. (2011). From learning models of natural image patches to whole image restoration. In Proceedings of IEEE International Conference on Computer Vision (ICCV), Barcelona, pp. 479–486.

  • Zuo, W. M., Zhang, L., Song, C. W., Zhang, D., & Gao, H. J. (2014). Gradient histogram estimation and preservation for texture enhanced image denoising. IEEE Transactions on Image Processing, 23, 2459–2472.

    Article  MathSciNet  Google Scholar 

  • Zhang, K., Zuo, W. M., & Zhang, L. (2018). FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Transactions on Image Processing, 27, 4608–4622.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their valuable comments that have led to a greatly improved paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by Key Program from Data Recovery Key Laboratory of Sichuan Province (Grant No. DRN19013)

A. Proof of stability

A. Proof of stability

Proof

We below prove that the weighted anisotropic diffusion model (6) is unconditionally stable provided that \(0<\lambda _{0}\le 1/16\). To this end, let \(I_{max}\) and \(I_{min}\) denote the maximum and the minimum of intensities across a given image, respectively.

It is easy to know that \(0\le g(\Vert \nabla I^{t}_{p,q}\Vert ,K), \mathcal {G}(\Vert \nabla I^{t}_{U_{p},U_{q}}\Vert ,K_{r},K_{s})\le 1\) for \(q\in N_{p}\) and \(0\le H_{p}^{t}, \mathcal {H}_{p}^{t}\le 1\). Since \(0\le \lambda ^{t}\le 1/16\) holds due to \(0<\lambda _{0}\le 1/16\), we derive that

$$\begin{aligned} I^{t+1}_{p}&=I^{t}_{p}+\lambda ^{t}\Big [H_{p}^{t}\sum _{q\in N_{p}}g(\Vert \nabla I^{t}_{p,q}\Vert ,K)\nabla I^{t}_{p,q}+\mathcal {H}_{p}^{t}\sum _{q\in N_{p}}\mathcal {G}(\Vert \nabla I^{t}_{U_{p},U_{q}}\Vert ,K_{r},K_{s})\nabla I^{t}_{p,q}\Big ] \nonumber \\&=\left( \frac{1}{2}-\lambda ^{t}H_{p}^{t}\sum _{q\in N_{p}}g(\Vert \nabla I^{t}_{p,q}\Vert ,K)\right) I^{t}_{p}+\lambda ^{t}H_{p}^{t}\sum _{q\in N_{p}}g(\Vert \nabla I^{t}_{p,q}\Vert ,K)I^{t}_{q} \nonumber \\&\quad +\, \left( \frac{1}{2}-\lambda ^{t}\mathcal {H}_{p}^{t}\sum _{q\in N_{p}}\mathcal {G}(\Vert \nabla I^{t}_{U_{p},U_{q}}\Vert ,K_{r},K_{s})\right) I^{t}_{p} \nonumber \\&\quad +\lambda ^{t}\mathcal {H}_{p}^{t}\sum _{q\in N_{p}}\mathcal {G}(\Vert \nabla I^{t}_{U_{p},U_{q}}\Vert ,K_{r},K_{s})I^{t}_{q} \nonumber \\&\ge \left( \frac{1}{2}-\lambda ^{t}H_{p}^{t}\sum _{q\in N_{p}}g(\Vert \nabla I^{t}_{p,q}\Vert ,K)\right) I_{min}+\lambda ^{t}H_{p}^{t}\sum _{q\in N_{p}}g(\Vert \nabla I^{t}_{p,q}\Vert ,K)I_{min} \nonumber \\&\quad +\, \left( \frac{1}{2}-\lambda ^{t}\mathcal {H}_{p}^{t}\sum _{q\in N_{p}}\mathcal {G}(\Vert \nabla I^{t}_{U_{p},U_{q}}\Vert ,K_{r},K_{s})\right) I_{min} \nonumber \\&\quad +\lambda ^{t}\mathcal {H}_{p}^{t}\sum _{q\in N_{p}}\mathcal {G}(\Vert \nabla I^{t}_{U_{p},U_{q}}\Vert ,K_{r},K_{s})I_{min} \nonumber \\&=\frac{I_{min}}{2}+\frac{I_{min}}{2}= I_{min}. \end{aligned}$$
(13)

Similarly we have

$$\begin{aligned} I^{t+1}_{p}&=\left( \frac{1}{2}-\lambda ^{t}H_{p}^{t}\sum _{q\in N_{p}}g(\Vert \nabla I^{t}_{p,q}\Vert ,K)\right) I^{t}_{p}+\lambda ^{t}H_{p}^{t}\sum _{q\in N_{p}}g(\Vert \nabla I^{t}_{p,q}\Vert ,K)I^{t}_{q} \nonumber \\&\quad +\, \left( \frac{1}{2}-\lambda ^{t}\mathcal {H}_{p}^{t}\sum _{q\in N_{p}}\mathcal {G}(\Vert \nabla I^{t}_{U_{p},U_{q}}\Vert ,K_{r},K_{s})\right) I^{t}_{p} \nonumber \\&\quad +\lambda ^{t}\mathcal {H}_{p}^{t}\sum _{q\in N_{p}}\mathcal {G}(\Vert \nabla I^{t}_{U_{p},U_{q}}\Vert ,K_{r},K_{s})I^{t}_{q} \nonumber \\&\le \left( \frac{1}{2}-\lambda ^{t}H_{p}^{t}\sum _{q\in N_{p}}g(\Vert \nabla I^{t}_{p,q}\Vert ,K)\right) I_{max}+\lambda ^{t}H_{p}^{t}\sum _{q\in N_{p}}g(\Vert \nabla I^{t}_{p,q}\Vert ,K)I_{max} \nonumber \\&\quad +\, \left( \frac{1}{2}-\lambda ^{t}\mathcal {H}_{p}^{t}\sum _{q\in N_{p}}\mathcal {G}(\Vert \nabla I^{t}_{U_{p},U_{q}}\Vert ,K_{r},K_{s})\right) I_{max} \nonumber \\&\quad +\lambda ^{t}\mathcal {H}_{p}^{t}\sum _{q\in N_{p}}\mathcal {G}(\Vert \nabla I^{t}_{U_{p},U_{q}}\Vert ,K_{r},K_{s})I_{max} \nonumber \\&=\frac{I_{max}}{2}+\frac{I_{max}}{2}= I_{max}. \end{aligned}$$
(14)

Combining (13) and (14) gives that \(I_{min}\le I^{t+1}_{p}\le I_{max}\), which demonstrates that the intensity of any pixel p in a smoothed image is always bounded, and further guarantees the stability of the model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., He, T. Image denoising via an adaptive weighted anisotropic diffusion. Multidim Syst Sign Process 32, 651–669 (2021). https://doi.org/10.1007/s11045-020-00760-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-020-00760-x

Keywords

Navigation