Detection of fall for the elderly in an indoor environment using a tri-axial accelerometer and Kinect depth data

Abstract

Monitoring elderly people who are living alone is a crucial task as they are at great risk of fall occurrence. In this paper, we present a robust framework for fall detection that makes use of two different signals namely tri-axial data from an accelerometer and depth maps from a Kinect sensor. Our approach functions at two stages. At the first stage, the accelerometer data is continuously being monitored and is used to indicate fall whenever the sum vector magnitude of the tri-axial data crosses a specific threshold. This fall indication denotes a high probability of fall occurrence. To confirm this and to avoid false alarms, the depth maps of a predefined window length captured prior to the instant of fall indication are obtained and processed. We propose a new descriptor, Entropy of Depth Difference Gradient Map that acts as a discriminative descriptor in differentiating fall from other daily activities. Finally, fall confirmation is done by employing a sparse representation-based classifier using the extracted descriptors. To ascertain the proposed model, we have performed experimental analysis using a publicly available UR Fall Detection dataset and also using a Synthetic dataset. The experimental results clearly depict the superior performance of our model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., & Vecchio, A. (2012). A smartphone-based fall detection system. Pervasive and Mobile Computing, 8(6), 883–899. https://doi.org/10.1016/j.pmcj.2012.08.003.

    Article  Google Scholar 

  2. Alhimale, L., Zedan, H., & Al-Bayatti, A. (2014). The implementation of an intelligent and video-based fall detection system using a neural network. Applied Soft Computing Journal, 18, 56–69. https://doi.org/10.1080/14747731.2015.1085211.

    Article  Google Scholar 

  3. Aslan, M., Sengur, A., Xiao, Y., Wang, H., Ince, M. C., & Ma, X. (2015). Shape feature encoding via Fisher Vector for efficient fall detection in depth-videos. Applied Soft Computing Journal, 37, 1023–1028. https://doi.org/10.1016/j.asoc.2014.12.035.

    Article  Google Scholar 

  4. Auvinet, E., Multon, F., Aubin, C. E., Meunier, J., & Raison, M. (2015). Detection of gait cycles in treadmill walking using a Kinect. Gait and Posture, 41(2), 722–725. https://doi.org/10.1016/j.gaitpost.2014.08.006.

    Article  Google Scholar 

  5. Bourke, A. K., & Lyons, G. M. (2008). A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Medical Engineering & Physics, 30(1), 84–90. https://doi.org/10.1016/j.medengphy.2006.12.001.

    Article  Google Scholar 

  6. Bourke, A. K., O’Brien, J. V., & Lyons, G. M. (2007). Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait and Posture, 26(2), 194–199. https://doi.org/10.1016/j.gaitpost.2006.09.012.

    Article  Google Scholar 

  7. Burns, A., Greene, B. R., McGrath, M. J., O’Shea, T. J., Kuris, B., Ayer, S. M., et al. (2010). SHIMMERTM—A wireless sensor platform for noninvasive biomedical research. IEEE Sensors Journal, 10(9), 1527–1534. https://doi.org/10.1109/JSEN.2010.2045498.

    Article  Google Scholar 

  8. Chen, Y. C., & Lin, Y. W. (2010). Indoor RFID gait monitoring system for fall detection. In 2010 2nd international symposium on aware computing, ISAC 2010symposium guide (pp. 207–212). https://doi.org/10.1109/isac.2010.5670478.

  9. De Miguel, K., Brunete, A., Hernando, M., & Gambao, E. (2017). Home camera-based fall detection system for the elderly. Sensors (Switzerland). https://doi.org/10.3390/s17122864.

    Article  Google Scholar 

  10. Fan, Y., Levine, M. D., Wen, G., & Qiu, S. (2017). A deep neural network for real-time detection of falling humans in naturally occurring scenes. Neurocomputing, 260, 43–58. https://doi.org/10.1016/j.neucom.2017.02.082.

    Article  Google Scholar 

  11. Jansi, R., & Amutha, R. (2018). A novel chaotic map based compressive classification scheme for human activity recognition using a tri-axial accelerometer. Multimedia Tools and Applications, 77(23), 31261–31280. https://doi.org/10.1007/s11042-018-6117-z.

    Article  Google Scholar 

  12. Jansi, R., & Amutha, R. (2019). Sparse representation based classification scheme for human activity recognition using smartphones. Multimedia Tools and Applications, 78(8), 11027–11045. https://doi.org/10.1007/s11042-018-6662-5.

    Article  Google Scholar 

  13. Kwolek, B., & Kepski, M. (2014). Human fall detection on embedded platform using depth maps and wireless accelerometer. Computer Methods and Programs in Biomedicine, 117(3), 489–501. https://doi.org/10.1016/j.cmpb.2014.09.005.

    Article  Google Scholar 

  14. Kwolek, B., & Kepski, M. (2015). Improving fall detection by the use of depth sensor and accelerometer. Neurocomputing, 168, 637–645. https://doi.org/10.1016/j.neucom.2015.05.061.

    Article  Google Scholar 

  15. Kwolek, B., & Kepski, M. (2016). Fuzzy inference-based fall detection using Kinect and body-worn accelerometer. Applied Soft Computing Journal, 40, 305–318. https://doi.org/10.1016/j.asoc.2015.11.031.

    Article  Google Scholar 

  16. Lee, H., Battle, A., Raina, R., & Ng, A. (2006). Efficient Sparse coding algorithms. NIPS. https://doi.org/10.7551/mitpress/7503.003.0105.

    Article  Google Scholar 

  17. Li, B. Y. L., Xue, M., Mian, A., Liu, W., & Krishna, A. (2016). Robust RGB-D face recognition using Kinect sensor. Neurocomputing, 214, 93–108. https://doi.org/10.1016/j.neucom.2016.06.012.

    Article  Google Scholar 

  18. Li, Q., Stankovic, J. A., Hanson, M. A., Barth, A. T., Lach, J., & Zhou, G. (2009). Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. In Proceedings2009 6th international workshop on wearable and implantable body sensor networks, BSN 2009 (pp. 138–143). https://doi.org/10.1109/bsn.2009.46.

  19. Lim, D., Park, C., Kim, N. H., Kim, S. H., & Yu, Y. S. (2014). Fall-detection algorithm using 3-axis acceleration: Combination with simple threshold and hidden markov model. Journal of Applied Mathematics. https://doi.org/10.1155/2014/896030.

    Article  Google Scholar 

  20. Liu, T., Guo, X., & Wang, G. (2012). Elderly-falling detection using distributed direction-sensitive pyroelectric infrared sensor arrays. Multidimensional Systems and Signal Processing, 23(4), 451–467. https://doi.org/10.1007/s11045-011-0161-4.

    MathSciNet  Article  MATH  Google Scholar 

  21. Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2009). Online dictionary learning for sparse coding. In Proceedings of the 26th international conference on machine learning. https://doi.org/10.1145/1553374.1553463.

  22. Mazurek, P., Wagner, J., & Morawski, R. Z. (2018). Use of kinematic and mel-cepstrum-related features for fall detection based on data from infrared depth sensors. Biomedical Signal Processing and Control. https://doi.org/10.1016/j.bspc.2017.09.006.

    Article  Google Scholar 

  23. Nissimov, S., Goldberger, J., & Alchanatis, V. (2015). Obstacle detection in a greenhouse environment using the Kinect sensor. Computers and Electronics in Agriculture, 113, 104–115. https://doi.org/10.1016/j.compag.2015.02.001.

    Article  Google Scholar 

  24. Panahi, L., & Ghods, V. (2018). Human fall detection using machine vision techniques on RGB–D images. Biomedical Signal Processing and Control, 44, 146–153. https://doi.org/10.1016/j.bspc.2018.04.014.

    Article  Google Scholar 

  25. Pierleoni, P., Belli, A., Maurizi, L., Palma, L., Pernini, L., Paniccia, M., et al. (2016). A wearable fall detector for elderly people based on AHRS and barometric sensor. IEEE Sensors Journal, 16(17), 6733–6744. https://doi.org/10.1109/JSEN.2016.2585667.

    Article  Google Scholar 

  26. Rimminen, H., Lindström, J., Linnavuo, M., & Sepponen, R. (2010). Detection of falls among the elderly by a floor sensor using the electric near field. IEEE Transactions on Information Technology in Biomedicine, 14(6), 1475–1476. https://doi.org/10.1109/TITB.2010.2051956.

    Article  Google Scholar 

  27. Saini, R., Kumar, P., Roy, P. P., & Dogra, D. P. (2018). A novel framework of continuous human-activity recognition using Kinect. Neurocomputing, 311, 99–111. https://doi.org/10.1016/j.neucom.2018.05.042.

    Article  Google Scholar 

  28. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(4), 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x.

    MathSciNet  Article  MATH  Google Scholar 

  29. Shen, V. R. L., Lai, H. Y., & Lai, A. F. (2015). The implementation of a smartphone-based fall detection system using a high-level fuzzy Petri net. Applied Soft Computing Journal, 26, 390–400. https://doi.org/10.1016/j.asoc.2014.10.028.

    Article  Google Scholar 

  30. Sokolova, M. V., Serrano-Cuerda, J., Castillo, J. C., & Fernández-Caballero, A. (2013). A fuzzy model for human fall detection in infrared video. Journal of Intelligent and Fuzzy Systems, 24(2), 215–228. https://doi.org/10.3233/IFS-2012-0548.

    Article  Google Scholar 

  31. Tran, T. H., Le, T. L., Hoang, V. N., & Vu, H. (2017). Continuous detection of human fall using multimodal features from Kinect sensors in scalable environment. Computer Methods and Programs in Biomedicine. https://doi.org/10.1016/j.cmpb.2017.05.007.

    Article  Google Scholar 

  32. Tran, T. T. H., Le, T. L., & Morel, J. (2014). An analysis on human fall detection using skeleton from Microsoft kinect. In 2014 IEEE 5th international conference on communications and electronics, IEEE ICCE 2014 (pp. 484–489). https://doi.org/10.1109/cce.2014.6916752.

  33. Wu, F., Zhao, H., Zhao, Y., & Zhong, H. (2015). Development of a wearable-sensor-based fall detection system. International Journal of Telemedicine and Applications. https://doi.org/10.1155/2015/576364.

    Article  Google Scholar 

  34. Yang, L., Ren, Y., & Zhang, W. (2016). 3D depth image analysis for indoor fall detection of elderly people. Digital Communications and Networks, 2(1), 24–34. https://doi.org/10.1016/j.dcan.2015.12.001.

    Article  Google Scholar 

  35. Yang, S. W., & Lin, S. K. (2014). Fall detection for multiple pedestrians using depth image processing technique. Computer Methods and Programs in Biomedicine, 114(2), 172–182. https://doi.org/10.1016/j.cmpb.2014.02.001.

    Article  Google Scholar 

  36. Yao, L., Min, W., & Lu, K. (2017). A new approach to fall detection based on the human torso motion model. Applied Sciences, 7(10), 993. https://doi.org/10.3390/app7100993.

    Article  Google Scholar 

  37. Zigel, Y., Litvak, D., & Gannot, I. (2009). A method for automatic fall detection of elderly people using floor vibrations and soundProof of concept on human mimicking doll falls. IEEE Transactions on Biomedical Engineering, 56(12), 2858–2867. https://doi.org/10.1109/TBME.2009.2030171.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Jansi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jansi, R., Amutha, R. Detection of fall for the elderly in an indoor environment using a tri-axial accelerometer and Kinect depth data. Multidim Syst Sign Process 31, 1207–1225 (2020). https://doi.org/10.1007/s11045-020-00705-4

Download citation

Keywords

  • Accelerometer
  • Classification
  • Fall detection
  • Kinect
  • Sparse representation