An improved signal processing algorithm for VSF extraction

Abstract

Contactless detection of human beings via extracting vital sign features (VSF) is a perfect technology by employing an ultra-wideband radar. Only using Fourier transform, it is a challenging task to extract VSF in a complex environment, which can cause a lower signal to noise ratio (SNR) and significant errors due to the harmonics. This paper proposes an improved signal processing algorithm for VSF extraction via analyzing the skewness and standard deviation of the collected impulses. The discrete windowed Fourier transform technique is used to estimate the time of arrival of the pulses. The frequency of human breathing movements is obtained using an accumulation scheme in frequency domain, which can better cancel out the harmonics. The capabilities of removing clutters and improving SNR are validated compared with several well-known methods experimentally.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Allen, B. (1977). Short term spectral analysis, synthesis, and modification by discrete fourier transform. IEEE Transactions on Acoustics, Speech, and Signal Processing, 25(3), 235–238.

    MATH  Article  Google Scholar 

  2. Ascione, M., et al. (2013). A new measurement method based on music algorithm for through-the-wall detection of life signs. IEEE Transactions on Instrumentation and Measurement, 62(1), 13–26.

    Article  Google Scholar 

  3. Baldi, M., et al. (2015). Non-invasive UWB sensing of astronauts’ breathing activity. Sensors, 15(1), 565–591.

    Article  Google Scholar 

  4. Conte, E., Filippi, A., & Tomasin, S. (2010). ML period estimation with application to vital sign monitoring. IEEE Signal Processing Letters, 17(11), 905–908.

    Article  Google Scholar 

  5. Gennarelli, G., Ludeno, G., & Soldovieri, F. (2016). Real-time through-wall situation awareness using a microwave doppler radar sensor. Remote Sensing, 8(8), 621.

    Article  Google Scholar 

  6. Gu, C., & Li, C. (2015). Assessment of human respiration patterns via noncontact sensing using doppler multi-radar system. Sensors, 15(3), 6383–6398.

    Article  Google Scholar 

  7. Hu, X., & Jin, T. (2016). Short-range vital signs sensing based on EEMD and CWT using IR-UWB radar. Sensors, 16(12), 2025.

    Article  Google Scholar 

  8. Hu, W., et al. (2014). Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor. IEEE Transactions on Biomedical Engineering, 61(3), 725–735.

    Article  Google Scholar 

  9. Huang, Q., Qu, L., & Fang, G. (2010). UWB through-tall imaging based on compressive sensing. IEEE Transactions on Geoscience and Remote Sensing, 48(3), 1408–1415.

    Article  Google Scholar 

  10. Huang, M. C., et al. (2016). A self-calibrating radar sensor system for measuring vital signs. IEEE Transactions on Biomedical Circuits and Systems, 10(2), 352–363.

    Article  Google Scholar 

  11. JalaliBidgoli, F., Moghadami, S., & Ardalan, S. (2016). A compact portable microwave life-detection device for finding survivors. IEEE Embedded Systems Letters, 8(1), 10–13.

    Article  Google Scholar 

  12. Koo, Y. S., et al. (2013). UWB MicroDoppler radar for human gait analysis, tracking more than one person, and vital sign detection of moving persons. In IEEE MTT-S International Microwave Symposium Digest, Seattle, WA, USA (pp. 1–4).

  13. Lazaro, A., Girbau, D., & Villarino, R. (2014). Techniques for clutter suppression in the presence of body movements during the detection of respiratory activity through UWB radars. Sensors, 14(2), 2595–2618.

    Article  Google Scholar 

  14. Le, C., et al. (2009). Ultra-wideband radar imaging of building interior: Measurements and predictions. IEEE Transactions on Geoscience and Remote Sensing, 47(5), 1409–1420.

    Article  Google Scholar 

  15. Li, W. Z. (2013). A new method for non-line-of-sight vital sign monitoring based on developed adaptive line enhancer using low centre frequency UWB radar. Progress in Electromagnetics Research, 133(34), 535–554.

    Article  Google Scholar 

  16. Li, C., & Lin, J. (2008). Random body movement cancellation in Doppler radar vital sign detection. IEEE Transactions on Microwave Theory and Techniques, 56(12), 3143–3152.

    Article  Google Scholar 

  17. Li, Z., et al. (2013). A novel method for respiration-like clutter cancellation in life detection by dual-frequency IR-UWB radar. IEEE Transactions on Microwave Theory and Techniques, 61(5), 2086–2092.

    Article  Google Scholar 

  18. Li, J., et al. (2014). Advanced signal processing for vital sign extraction with applications in UWB radar detection of trapped victims in complex environments. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(3), 783–791.

    Article  Google Scholar 

  19. Liang, S. D. (2016). Sense-through-wall human detection based on UWB radar sensors. Signal Process, 126, 117–124.

    Article  Google Scholar 

  20. Liang, X., et al. (2017). Energy detector based TOA estimation for MMW systems using machine learning. Telecommunication Systems, 64(2), 417–427.

    Article  Google Scholar 

  21. Liang, X., et al. (2018a). Experimental study of wireless monitoring of human respiratory movements using UWB impulse radar systems. Sensors, 18(9), 3065.

    Article  Google Scholar 

  22. Liang, X., et al. (2018b). Ultra-wideband impulse radar through-wall detection of vital signs. Scientific Reports, 8, 13367.

    Article  Google Scholar 

  23. Liang, X., et al. (2018c). An improved algorithm for through-wall target detection using ultra-wideband impulse radar. IEEE Access, 5(99), 22101–22118.

    Google Scholar 

  24. Liang, X., et al. (2018d). Improved denoising method for through-wall vital sign detection using UWB impulse radar. Digital Signal Processing, 74, 72–93.

    MathSciNet  Article  Google Scholar 

  25. Liang, X., et al. (2018e). Ultra-wide band impulse radar for life detection using wavelet packet decomposition. Physical Communication, 4(4), 1–20.

    Google Scholar 

  26. Liang, X., et al. (2018f). Through-wall human being detection using UWB impulse radar. EURASIP Journal on Wireless Communications and Networking, 2018(46), 1–17.

    Google Scholar 

  27. Liu, L., Liu, Z., & Barrowes, B. (2011). Through-wall bio-radiolocation with UWB impulse radar—Observation, simulation and signal extraction. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(4), 791–798.

    Article  Google Scholar 

  28. Liu, L., et al. (2014). Numerical simulation of UWB impulse radar vital sign detection at an earthquake disaster site. Ad Hoc Networks, 13(1), 34–41.

    Article  Google Scholar 

  29. Lv, H., et al. (2016). Improved detection of human respiration using data fusion based on a multistatic UWB radar. Remote Sensing, 8(9), 773.

    Article  Google Scholar 

  30. Mak, J. C. C., Bois, A., & Poon, J. K. S. (2016). Programmable multiring butterworth filters with automated resonance and coupling tuning. IEEE Journal of Selected Topics in Quantum Electronics, 22(6), 1–9.

    Article  Google Scholar 

  31. Marple, L. (1999). Computing the discrete-time “analytic” signal via FFT. IEEE Transactions on Signal Processing, 47(9), 2600–2603.

    MATH  Article  Google Scholar 

  32. Mercuri, M., et al. (2013). Optimized SFCW radar sensor aiming at fall detection in a real room environment. In Proceedings of the IEEE biomedical wireless technologies, networks, and sensing systems, Austin, TX, USA (pp. 4–6).

  33. Mercuri, M., et al. (2013). Analysis of an indoor biomedical radar-based system for health monitoring. IEEE Transactions on Microwave Theory and Techniques, 61(5), 2061–2068.

    Article  Google Scholar 

  34. Naishadham, K., & Piou, J. E. (2008). A robust state space model for the characterization of extended returns in radar target signatures. IEEE Transactions on Antennas and Propagation, 56(6), 1742–1751.

    Article  Google Scholar 

  35. Nezirovíc, A., Yarovoy, A., & Ligthart, L. (2010). Signal processing for improved detection of trapped victims using UWB radar. IEEE Transactions on Geoscience and Remote Sensing, 48(4), 2005–2014.

    Article  Google Scholar 

  36. Nijsure, Y., et al. (2013). An impulse radio ultrawideband system for contactless noninvasive respiratory monitoring. IEEE Transactions on Biomedical Engineering, 60(6), 1509–1517.

    Article  Google Scholar 

  37. Park, B. K., Boric-Lubecke, O., & Lubecke, V. M. (2007). Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems. IEEE Transactions on Microwave Theory and Techniques, 55(5), 1073–1079.

    Article  Google Scholar 

  38. Ren, L. (2015). Noncontact multiple heartbeats detection and subject localization using UWB impulse doppler radar. IEEE Microwave and Wireless Components Letters, 25(10), 690–692.

    Article  Google Scholar 

  39. Ren, L., et al. (2016). Phase-based methods for heart rate detection using UWB impulse Doppler radar. IEEE Transactions on Microwave Theory and Techniques, 64(10), 3319–3331.

    Article  Google Scholar 

  40. Singh, A., et al. (2013). Data-based quadrature imbalance compensation for a CW Doppler radar system. IEEE Transactions on Microwave Theory and Techniques, 61(4), 1718–1724.

    Article  Google Scholar 

  41. Vu, V. T., et al. (2010). Detection of moving targets by focusing in UWB SAR theory and experimental results. IEEE Transactions on Geoscience and Remote Sensing, 48(10), 3799–3815.

    MathSciNet  Article  Google Scholar 

  42. Wang, S., et al. (2015). A novel ultra-wideband 80 GHz FMCW radar system for contactless monitoring of vital signs. In Proceedings of the IEEE engineering in medicine and biology society, Milan, Italy (pp. 4978–4981).

  43. Wang, Y., Liu, Q., & Fathy, A. E. (2012). Simultaneous localization and respiration detection of multiple people using low cost UWB biometric pulse Doppler radar sensor. In IEEE MTT-S international microwave symposium digest, Montreal, QC, Canada (pp. 1–3).

  44. Wang, Y., Liu, Q., & Fathy, A. E. (2013). CW and pulse-Doppler radar processing based on FPGA for human sensing applications. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 3097–3107.

    Article  Google Scholar 

  45. Wang, J., et al. (2014a). Noncontact distance and amplitude-independent vibration measurement based on an extended DACM algorithm. IEEE Transactions on Instrumentation and Measurement, 63(1), 145–153.

    Article  Google Scholar 

  46. Wang, G., et al. (2014b). A hybrid FMCW-interferometry radar for indoor precise positioning and versatile life activity monitoring. IEEE Transactions on Microwave Theory and Techniques, 62(11), 2812–2822.

    Article  Google Scholar 

  47. Wang, Z., et al. (2018a). Cooperative RSS-based localization in wireless sensor networks using relative error estimation and semidefinite programming. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2018.2880991.

    Article  Google Scholar 

  48. Wang, Z., et al. (2018b). A grid-based localization algorithm for wireless sensor networks using connectivity and RSS rank. IEEE Access, 6(1), 8426–8439.

    Article  Google Scholar 

  49. Wójcicki, K., et al. (2008). Exploiting conjugate symmetry of the short-time Fourier spectrum for speech enhancement. IEEE Signal Processing Letters, 15, 461–464.

    Article  Google Scholar 

  50. Wu, S., et al. (2016). Improved human respiration detection method via ultra-wideband radar in through-wall or other similar conditions. IET Radar, Sonar and Navigation, 10(3), 468–476.

    Article  Google Scholar 

  51. Zhang, Z. (2013). Human-target detection and surrounding structure estimation under a simulated rubble via UWB radar. IEEE Transactions on Geoscience and Remote Sensing, 10(2), 328–331.

    Article  Google Scholar 

  52. Zhuge, X., & Yarovoy, A. (2011). A sparse aperture MIMO-SAR based UWB imaging system for concealed weapon detection. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 509–518.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Science and Technology on Electronic Test and Measurement Laboratory (614200102010617, 614200103010117, 614200105010217), and China Electronics Technology Group Corporation Innovation Fund (KJ1701008).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Zhang, H., Lu, T. et al. An improved signal processing algorithm for VSF extraction. Multidim Syst Sign Process 30, 1811–1827 (2019). https://doi.org/10.1007/s11045-019-00629-8

Download citation

Keywords

  • Ultra-wideband (UWB) radar
  • Vital sign feature (VSF)
  • Discrete windowed Fourier transform (DWFT)