Skip to main content
Log in

Despeckling of ultrasound images using novel adaptive wavelet thresholding function

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In the present work, a new thresholding function has been proposed for despeckling of ultrasound images. The main limitation of ultrasound images is presence of speckle noise which degrades image quality and hampers interpretation of the image. The proposed method has been first tested on the synthetic images so to analyse the performance of the proposed technique. The synthetic images are degraded by adding speckle noise with different degrees of noise variance (0.01–0.2) so as to analyse its performance for various noise variances. The proposed method is tested for orthogonal and biorthogonal wavelet filters. It is observed that Symlet 8 outperforms the other wavelet filters. The value of parameter ‘β’ is varied from 1 to 100 and its optimal value is selected which gives best results. Comparison with already existing exponential thresholding method, universal thresholding method, wiener filter and sparse coding have been made and proposed technique has given improved results. This method is tested on liver ultrasound images as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abd-Elmoniem, K. Z., Youssef, A.-B. M., & Kadah, Y. M. (2002). Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion. IEEE Transactions on Biomedical Engineering, 49(9), 997–1014.

    Article  Google Scholar 

  • Achim, A., Bezerianos, A., & Tsakalide, P. (2001). Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Transactions on Medical Imaging, 20(8), 772–783.

    Article  Google Scholar 

  • Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions Signal Processing, 54(11), 4311–4322.

    Article  MATH  Google Scholar 

  • Aiazzi, B., Alparone, L., & Baronti, S. (1998). Multiresolution local-statistics speckle filtering based on a ratio Laplacian pyramid. IEEE Transactions on Geoscience and Remote Sensing, 36(5), 1466–1476.

    Article  Google Scholar 

  • Andria, G., Attivissimo, F., Cavone, G., Giaquinto, N., & Lanzolla, A. M. L. (2012). Linear filtering of 2-D wavelet coefficients for denoising ultrasound medical images. Measurement, 45(7), 1792–1800.

    Article  Google Scholar 

  • Andria, G., Attivissimo, F., Lanzolla, A. M. L., & Savino, M. (2012). Wavelet based methods for speckle reduction in ultrasound images. In 2012 IEEE international instrumentation and measurement technology conference (I2MTC) (pp. 1722–1725).

  • Andria, G., Attivissimo, F., Lanzolla, A. M. L., & Savino, M. (2013). A suitable threshold for speckle reduction in ultrasound images. IEEE Transactions on Instrumentation and Measurement, 62(8), 2270–2279.

    Article  Google Scholar 

  • Bioucas-Dias, J. M., & Figueiredo, M. A. T. (2010). Multiplicative noise removal using variable splitting and constrained optimization. IEEE Transactions on Image Processing, 19(7), 1720–1730.

    Article  MathSciNet  MATH  Google Scholar 

  • Burckhardt, C. B. (1978). Speckle in ultrasound B-mode scans. IEEE Transactions on Sonics and Ultrasonics, 25(1), 1–6.

    Article  Google Scholar 

  • Chang, S. G., Yu, B., & Vetterli, M. (2000). Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing, 9(9), 1532–1546.

    Article  MathSciNet  MATH  Google Scholar 

  • Cho, D., & Bui, T. D. (2005). Multivariate statistical modeling for image denoising using wavelet transforms. Signal Processing: Image Communication, 20(1), 77–89.

    Google Scholar 

  • Choi, H. H., Lee, J. H., Kim, S. M., & Park, S. Y. (2015). Speckle noise reduction in ultrasound images using a discrete wavelet transform-based image fusion technique. Bio-Medical Materials and Engineering, 26(s1), S1587–S1597.

    Article  Google Scholar 

  • Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE Transactins on Information Theory, 41(3), 613–627.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L., & Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 90(432), 1200–1224.

    Article  MathSciNet  MATH  Google Scholar 

  • Donohol, M. J., & Johnsone, M. (1994). Ideal spatial adaptation via wavelet shrinkage. Biometrika, 12(8), 430–445.

    Google Scholar 

  • Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transaction Image Processing, 15(12), 3736–3745.

    Article  MathSciNet  Google Scholar 

  • Firoiu, I., Nafornita, C., Boucher, J. M., & Isar, A. (2009). Image denoising using a new implementation of the hyperanalytic wavelet transform. IEEE Transactions on Instrumentation and Measurement, 58(8), 2410–2416.

    Article  Google Scholar 

  • Frost, V. S., Stiles, J. A., Shanmugan, K. S., & Holtzman, J. C. (1982). A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 157–166.

    Article  Google Scholar 

  • Gupta, S., Chauhan, R. C., & Saxena, S. C. (2004). Wavelet-based statistical approach for speckle reduction in medical ultrasound images. Medical and Biological Engineering and Computing, 42(2), 189–192.

    Article  Google Scholar 

  • Hao, X., Gao, S., & Gao, X. (1999). A novel multiscale nonlinear thresholding method for ultrasonic speckle suppressing. IEEE Transactions on Medical Imaging, 18(9), 787–794.

    Article  Google Scholar 

  • Hillery, A. D., & Chin, R. T. (1991). Iterative Wiener filters for image restoration. IEEE Transactions on Signal Processing, 39(8), 1892–1899.

    Article  Google Scholar 

  • Kuan, D., Sawchuk, A., Strand, T., & Chavel, P. (1987). Adaptive restoration of images with speckle. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(3), 373–383.

    Article  Google Scholar 

  • Lee, J. S. (1981). Speckle analysis and smoothing of synthetic aperture radar images. Computer graphics and image processing, 17(1), 24–32.

    Article  Google Scholar 

  • Loupas, T., McDicken, W. N., & Allan, P. L. (1989). An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Transactions on Circuits and Systems, 36(1), 129–135.

    Article  Google Scholar 

  • Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–693.

    Article  MATH  Google Scholar 

  • Mateo, J. L., & Fernández-Caballero, A. (2009). Finding out general tendencies in speckle noise reduction in ultrasound images. Expert Systems with Applications, 36(4), 7786–7797.

    Article  Google Scholar 

  • Nasri, M., & Nezamabadi-pour, H. (2009). Image denoising in the wavelet domain using a new adaptive thresholding function. Neurocomputing, 72(4), 1012–1025.

    Article  Google Scholar 

  • Pizurica, A., Philips, W., Lemahieu, I., & Acheroy, M. (2003). A versatile wavelet domain noise filtration technique for medical imaging. IEEE Transactions on Medical Imaging, 22(3), 323–331.

    Article  Google Scholar 

  • Rabbani, H., Vafadust, M., Abolmaesumi, P., & Gazor, S. (2008). Speckle noise reduction of medical ultrasound images in complex wavelet domain using mixture priors. IEEE Transactions on Biomedical Engineering, 55(9), 2152–2160.

    Article  Google Scholar 

  • Rubinstein, R., Zibulevsky, M., & Elad, M. (2008). Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. CS Technion report CS-2008-08. Computer Science Department, Technion.

  • Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. The Annals of Statistics, 9, 1135–1151.

    Article  MathSciNet  MATH  Google Scholar 

  • Sudha, S., Suresh, G. R., & Sukanesh, R. (2009). Speckle noise reduction in ultrasound images by wavelet thresholding based on weighted variance. International Journal of Computer Theory and Engineering, 1(1), 7.

    Article  Google Scholar 

  • Wagner, R. F., Smith, S. W., Sandrik, J. M., & Lopez, H. (1983). Statistics of speckle in ultrasound B-scans. IEEE Transactions on Sonics and Ultrasonics, 30(3), 156–163.

    Article  Google Scholar 

  • Wang, X. Y., & Fu, Z. K. (2010). A wavelet-based image denoising using least squares support vector machine. Engineering Applications of Artificial Intelligence, 23(6), 862–871.

    Article  Google Scholar 

  • Yu, Y., & Acton, S. T. (2002). Speckle reducing anisotropic diffusion. EEE Transactions on Image Processing, 11(11), 1260–1270.

    Article  MathSciNet  Google Scholar 

  • Zhang, F., Yoo, Y. M., Koh, L. M., & Kim, Y. (2007). Nonlinear diffusion in Laplacian pyramid domain for ultrasonic speckle reduction. IEEE Transactions on Medical Imaging, 26(2), 200–211.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Human Resource and Development, Government of India and Medical Imaging and Computational Modelling of Physiological Systems Research Laboratory, Department of Electronics and Communication Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab (India) for providing every type of financial, technical and administrative help to present this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simarjot Kaur Randhawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randhawa, S.K., Sunkaria, R.K. & Puthooran, E. Despeckling of ultrasound images using novel adaptive wavelet thresholding function. Multidim Syst Sign Process 30, 1545–1561 (2019). https://doi.org/10.1007/s11045-018-0616-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0616-y

Keywords

Navigation