Skip to main content
Log in

A novel approach for detecting the horizon using a convolutional neural network and multi-scale edge detection

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a novel method for horizon detection that combines a multi-scale approach and a convolutional neural network (CNN). The ability to detect the horizon is the first step toward situational awareness of autonomous ships, which have recently attracted interest, and greatly affects the performance of subsequent steps and that of the overall system. Since typical approaches for horizon detection mainly use edge information, two challenging issues need to be overcome: non-stability of edge detection and complex maritime scenes. The proposed method first detects line features by combining edge information from the various scales to reduce the computational time while mitigating the non-stability of edge detection. Subsequently, CNN is used to verify the edge pixels belonging to the horizon to process complex maritime scenes that contain line features similar to the horizon and changes in the sea status. Finally, linear curve fitting along with median filtering are iteratively used to estimate the horizon line accurately. We compared the performance of the proposed method with state-of-the-art methods using the largest database publicly available. The experimental results showed that the accuracy with which the proposed method can identify the horizon is superior to that of state-of-the-art methods. Our method has a median positional error of less than 1.7 pixels from the center of the horizon and a median angular error of approximately 0.1\(^{\circ }\). Further, our results showed that our method is the only one capable of detecting the horizon at high speed with high accuracy, which is attractive for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/. Accessed 10 July 2017.

  • Ahmad, T., Bebis, G., Regentova, E. E., & Nefian, A. (2013). A machine learning approach to horizon line detection using local features (pp. 181–193). Berlin: Springer. https://doi.org/10.1007/978-3-642-41914-0_19.

    Google Scholar 

  • Alpatov, B. A., Babayan, P. V., & Shubin, N. Y. (2015). Weighted Radon transform for line detection in noisy images. Journal of Electronic Imaging, 24, 023023. https://doi.org/10.1117/1.JEI.24.2.023023.

    Article  Google Scholar 

  • Bhattacharyya, A. (1946). On a measure of divergence between two multinomial populations. Sankhy: The Indian Journal of Statistics (1933–1960), 7(4), 401–406.

    MathSciNet  MATH  Google Scholar 

  • Bloisi, D., Iocchi, L., Fiorini, M., & Graziano, G. (2011). Automatic maritime surveillance with visual target detection. In Proceedings of the international defense and homeland security simulation workshop (DHSS) (pp. 141–145), Rome, Italy. http://www.dis.uniroma1.it/~bloisi/papers/bloisi-maritime-surveillance.pdf.

  • Bloisi, D. D., Iocchi, L., Pennisi, A., & Tombolini, L. (2015). ARGOS-Venice boat classification. In 12th IEEE international conference on advanced video and signal based surveillance (AVSS), 2015 (pp. 1–6). https://doi.org/10.1109/AVSS.2015.7301727.

  • Bottou, L. (2012). Stochastic gradient descent tricks (pp. 421–436). Berlin: Springer. https://doi.org/10.1007/978-3-642-35289-8_25.

    Google Scholar 

  • Bouma, H., de Lange, D. J. J., van den Broek, S. P., Kemp, R. A. W., & Schwering, P. B. W. (2008). Automatic detection of small surface targets with electro-optical sensors in a harbor environment. In Proc. SPIE, Electro-Optical Remote Sensing, Photonic Technologies, and Applications II, Cardiff, Wales (Vol. 7114). https://doi.org/10.1117/12.799813.

  • Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI, 8(6), 679–698. https://doi.org/10.1109/TPAMI.1986.4767851.

    Article  Google Scholar 

  • Cao, X., Rasheed, Z., Liu, H., & Haering, N. (2008). Automatic geo-registration of maritime video feeds. In 2008 19th international conference on pattern recognition (pp. 1–4). https://doi.org/10.1109/ICPR.2008.4761567.

  • Chang, C. C., & Lin, C. J. (2011). Libsvm: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3), 27:1–27:27. https://doi.org/10.1145/1961189.1961199.

    Article  Google Scholar 

  • Duda, R. O., & Hart, P. E. (1972). Use of the hough transformation to detect lines and curves in pictures. Communications of the ACM, 15(1), 11–15. https://doi.org/10.1145/361237.361242.

    Article  MATH  Google Scholar 

  • Ettinger, S. M., Nechyba, M. C., Ifju, P. G., & Waszak, M. (2002). Vision-guided flight stability and control for micro air vehicles. In IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 2134–2140). https://doi.org/10.1109/IRDS.2002.1041582.

  • Fefilatyev, S., Goldgof, D., & Lembke, C. (2010). Tracking ships from fast moving camera through image registration. In 2010 20th international conference on pattern recognition (pp. 3500–3503). https://doi.org/10.1109/ICPR.2010.854.

  • Fefilatyev, S., Goldgof, D., Shreve, M., & Lembke, C. (2012). Detection and tracking of ships in open sea with rapidly moving buoy-mounted camera system. Ocean Engineering, 54(Supplement C), 1–12. https://doi.org/10.1016/j.oceaneng.2012.06.028.

    Article  Google Scholar 

  • Gershikov, E., Libe, T., & Kosolapov, S. (2013). Horizon line detection in marine images: Which method to choose? International Journal on Advances in Intelligent Systems, 6(1 and 2), 79–88.

    Google Scholar 

  • Hung, Y. L., Su, C. W., Chang, Y. H., Chang, J. C., & Tyan, H. R. (2013). Skyline localization for mountain images. In 2013 IEEE international conference on multimedia and expo (ICME) (pp. 1–6). https://doi.org/10.1109/ICME.2013.6607424.

  • Itseez. (2015). Open source computer vision library. https://github.com/itseez/opencv. Accessed 12 June 2017.

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Proceedings of the 25th international conference on neural information processing systems (pp. 1097–1105). Curran Associates Inc., USA, NIPS’12. http://dl.acm.org/citation.cfm?id=2999134.2999257.

  • Lipschutz, I., Gershikov, E., & Milgrom, B. (2013). New methods for horizon line detection in infrared and visible sea images. Ocean Engineering, 3(8), 226–233.

    Google Scholar 

  • Lopez-Molina, C., Baets, B. D., Bustince, H., Sanz, J., & Barrenechea, E. (2013). Multiscale edge detection based on gaussian smoothing and edge tracking. Knowledge-Based Systems, 44(Supplement C), 101–111. https://doi.org/10.1016/j.knosys.2013.01.026.

    Article  Google Scholar 

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94.

    Article  Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

    MathSciNet  MATH  Google Scholar 

  • Prasad, D. K., Rajan, D., Prasath, C. K., Rachmawati, L., Rajabally, E., & Quek, C. (2016a). Mscm-life: multi-scale cross modal linear feature for horizon detection in maritime images. In 2016 IEEE region 10 conference (TENCON) (pp. 1366–1370). https://doi.org/10.1109/TENCON.2016.7848237.

  • Prasad, D. K., Rajan, D., Rachmawati, L., Rajabally, E., & Quek, C. (2016b). Muscowert: Multi-scale consistence of weighted edge radon transform for horizon detection in maritime images. Journal of the Optical Society of America A, 33, 2491.

    Article  Google Scholar 

  • Prasad, D. K., Rajan, D., Rachmawati, L., Rajabally, E., & Quek, C. (2017). Video processing from electro-optical sensors for object detection and tracking in a maritime environment: A survey. IEEE Transactions on Intelligent Transportation Systems, 18(8), 1993–2016. https://doi.org/10.1109/TITS.2016.2634580.

    Article  Google Scholar 

  • Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013). Overfeat: Integrated recognition, localization and detection using convolutional networks. CoRR abs/1312.6229, http://arxiv.org/abs/1312.6229.

  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556, http://arxiv.org/abs/1409.1556.

  • Tang, D., Sun, G., Wang, D. H., Niu, Z. D., & Chen, Z. P. (2013). Research on infrared ship detection method in sea-sky background. Proc. SPIE, International Symposium on Photoelectronic Detection and Imaging 2013: Infrared Imaging and Applications (Vol. 8907). https://doi.org/10.1117/12.2033039.

  • Torre, V., & Poggio, T. A. (1986). On edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI, 8(2), 147–163. https://doi.org/10.1109/TPAMI.1986.4767769.

    Article  Google Scholar 

  • van den Broek, S. P., Bouma, H., & Degache, M. A. C. (2008). Discriminating small extended targets at sea from clutter and other classes of boats in infrared and visual light imagery. ProcSPIE, 6969, 10–34. https://doi.org/10.1117/12.777542.

    Google Scholar 

  • Voles, P., Smith, A. A. W., & Teal, M. K. (2000). Nautical scene segmentation using variable size image windows and feature space reclustering (pp. 324–335). Berlin: Springer. https://doi.org/10.1007/3-540-45053-X_21.

    Google Scholar 

  • Wei, H., Nguyen, H., Ramu, P., Raju, C., Liu, X., & Yadegar, J. (2009). Automated intelligent video surveillance system for ships. In Proc. SPIE, Optics and Photonics in Global Homeland Security V and Biometric Technology for Human Identification VI (Vol. 7306). https://doi.org/10.1117/12.819051.

  • Witkin, A. P. (1983). Scale-space filtering. In Proceedings of the eighth international joint conference on artificial intelligence (Vol. 2, pp. 1019–1022). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, IJCAI’83. http://dl.acm.org/citation.cfm?id=1623516.1623607.

  • Xu, Z., & Shin, B. S. (2014). A statistical method for peak localization in Hough space by analysing butterflies (pp. 111–123). Berlin: Springer. https://doi.org/10.1007/978-3-642-53842-1_10.

    Google Scholar 

  • Zhang, H., Yin, P., Zhang, X., & Shen, X. (2011). A robust adaptive horizon recognizing algorithm based on projection. Transactions of the Institute of Measurement and Control, 33(6), 734–751. https://doi.org/10.1177/0142331209342201.

    Article  Google Scholar 

Download references

Acknowledgements

Chiyoon Jeong and KyeongDeok Moon were supported by the Industrial Strategic Technology Development Program (10077551, Development of original technology for artificial intelligence systems for autonomous navigating ships) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). Hyun S. Yang was supported by the ICT R&D program of MSIP/IITP [2017-0-00162, Development of Human-care Robot Technology for Aging Society] and the research project of the Ministry of Oceans and Fisheries of Korea (A fundamental research on maritime accident prevention–phase 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiyoon Jeong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, C., Yang, H.S. & Moon, K. A novel approach for detecting the horizon using a convolutional neural network and multi-scale edge detection. Multidim Syst Sign Process 30, 1187–1204 (2019). https://doi.org/10.1007/s11045-018-0602-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0602-4

Keywords

Navigation