Skip to main content
Log in

Decoder side Wyner–Ziv frame estimation using Chebyshev polynomial-based FLANN technique for distributed video coding

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a Chebyshev polynomial-based functional link artificial neural network (CFLANN) technique for Wyner–Ziv (WZ) frame estimation in a distributed video coding framework is proposed. The estimated WZ frame at the decoder is also referred to as the side information (SI). The proposed scheme (CFLANN-SI) works in two phases, namely, training and testing. The network is trained offline, and to achieve better generalization, the training (input, target) patterns are created across several video sequences constituting varied motion behavior. It estimates the SI frame using adjacent key frames as inputs. The training convergence characteristics of CFLANN-SI is observed to be faster with reduced mean square error as compared to a multi-layer perceptron-based prediction scheme. It is also observed that once the model is trained, it is capable of estimating SI for rest of the incoming WZ frames of the video sequences as well as for the video sequences which are not considered during the learning phase. The proposed scheme is evaluated with respect to different parameters, namely, rate-distortion, peak-signal-to-noise-ratio, the number of parity requests made per estimated frame, decoding time requirement and so on. Comparative analysis shows that the present CFLANN-SI technique generates better SI in resemblance to the competent schemes, in terms of the subjective quality improvement as well as the objective quality gains. Further, to substantiate that the present scheme provides a significant improvement over that of the benchmark techniques, a statistical analysis tool is used with a significance level of 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aaron, A., Rane, S. D., Setton, E., Girod, B., et al. (2004). Transform-domain Wyner–Ziv codec for video. In Proceedings of SPIE (Vol. 5308, pp. 520–528).

  • Aaron, A., Setton, E., & Girod, B. (2003). Towards practical Wyner–Ziv coding of video. In 2003 International Conference on Image Processing, 2003. ICIP 2003. Proceedings (Vol. 3, pp. III–869) IEEE.

  • Aaron, A., Zhang, R., & Girod, B. (2002). Wyner–Ziv coding of motion video. In Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002 (Vol. 1, pp. 240–244). IEEE.

  • Abou-Elailah, A., Dufaux, F., Farah, J., Cagnazzo, M., Srivastava, A., & Pesquet-Popescu, B. (2015). Fusion of global and local motion estimation using foreground objects for distributed video coding. IEEE Transactions on Circuits and Systems for Video Technology, 25(6), 973–987.

    Google Scholar 

  • Artigas, X., Ascenso, J., Dalai, M., Klomp, S., Kubasov, D., & Ouaret, M. (2007). The discover codec: Architecture, techniques and evaluation. In Picture Coding Symposium (PCS” 07), MMSPL-CONF-2009-014.

  • Ascenso, J., Brites, C., & Pereira, F. (2005). Improving frame interpolation with spatial motion smoothing for pixel domain distributed video coding. In 5th EURASIP conference on speech and image processing, multimedia communications and services, Smolenice, Slovak Republic (pp. 1–6).

  • Bhagath, P. R., Mukherjee, J., & Mukopadhayay, S. (2016). Low complexity encoder for feedback-channel-free distributed video coding using deep convolutional neural networks at the decoder. In Proceedings of the tenth Indian conference on computer vision, graphics and image processing, ACM (p. 44).

  • Brites, C., Ascenso, J., Pedro, J. Q., & Pereira, F. (2008). Evaluating a feedback channel based transform domain Wyner–Ziv video codec. Signal Processing: Image Communication, 23(4), 269–297.

    Google Scholar 

  • Cao, Y., Gao, S., & Zong, S. (2016). Extrapolation based pixel domain distributed video coding. In Eighth international conference on digital image processing (ICDIP 2016), International Society for Optics and Photonics (pp. 100,335J–100,335J).

  • Choi, B. D., Han, J. W., Kim, C. S., & Ko, S. J. (2007). Motion-compensated frame interpolation using bilateral motion estimation and adaptive overlapped block motion compensation. IEEE Transactions on Circuits and Systems for Video Technology, 17(4), 407–416.

    Google Scholar 

  • Dehuri, S., & Cho, S. B. (2010). A comprehensive survey on functional link neural networks and an adaptive PSO-BP learning for CFLNN. Neural Computing and Applications, 19(2), 187–205.

    Google Scholar 

  • Ding, J., Liu, F., Gan, Z., & Chen, C. (2013). The optimization of side information generation algorithm for Wyner–Ziv video coding. In 2013 International Conference on Wireless Communications & Signal Processing (WCSP) (pp. 1–6). IEEE.

  • Girod, B., Aaron, A. M., Rane, S., & Rebollo-Monedero, D. (2005). Distributed video coding. Proceedings of the IEEE, 93(1), 71–83.

    MATH  Google Scholar 

  • Gurav, P., & Patil, G. (2016). Full-reference video quality assessment using structural similarity (SSIM) index. Journal of Electronics and Communication Systems, 1(2), 1–15.

    Google Scholar 

  • Hameed, A. A., Karlik, B., & Salman, M. S. (2016). Back-propagation algorithm with variable adaptive momentum. Knowledge-Based Systems, 114, 79–87.

    Google Scholar 

  • Kang, S. J., Yoo, S., & Kim, Y. H. (2010). Dual motion estimation for frame rate up-conversion. IEEE Transactions on Circuits and Systems for Video Technology, 20(12), 1909–1914.

    Google Scholar 

  • Lee, T. T., & Jeng, J. T. (1998). The Chebyshev-polynomials-based unified model neural networks for function approximation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 28(6), 925–935.

    Google Scholar 

  • Li, M., Liu, J., Jiang, Y., & Feng, W. (2012). Complex-Chebyshev functional link neural network behavioral model for broadband wireless power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 60(6), 1979–1989.

    Google Scholar 

  • Liu, W., Vijayanagar, K. R., & Kim, J. (2014). Side information generation for distributed video coding using spatiotemporal joint bilinear upsampling. International Journal of Distributed Sensor Networks, 10(4), 578,213.

    Google Scholar 

  • Mall, S., & Chakraverty, S. (2017). Single layer Chebyshev neural network model for solving elliptic partial differential equations. Neural Processing Letters, 45(3), 825–840.

    Google Scholar 

  • Martins, R., Brites, C., Ascenso, J., & Pereira, F. (2010). Statistical motion learning for improved transform domain Wyner–Ziv video coding. IET Image Processing, 4(1), 28–41.

    Google Scholar 

  • Natário, L., Brites, C., Ascenso, J., & Pereira, F. (2005). Extrapolating side information for low-delay pixel-domain distributed video coding. In International workshop on visual content processing and representation (pp. 16–21). Springer, Berlin.

  • Pao, Y. (1989). Adaptive pattern recognition and neural networks. Reading: Addison Wesley.

    MATH  Google Scholar 

  • Patra, J. C., Chin, W. C., Meher, P. K., & Chakraborty, G. (2008). Legendre–Flann-based nonlinear channel equalization in wireless communication system. In IEEE international conference on systems, man and cybernetics, 2008. SMC 2008 (pp. 1826–1831). IEEE.

  • Patra, J. C., & Pal, R. N. (1995). A functional link artificial neural network for adaptive channel equalization. Signal Processing, 43(2), 181–195.

    MATH  Google Scholar 

  • Patra, J. C., Poh, W. B., Chaudhari, N. S., & Das, A. (2005). Nonlinear channel equalization with QAM signal using Chebyshev artificial neural network. In 2005 IEEE international joint conference on neural networks, 2005. IJCNN’05. Proceedings (Vol. 5, pp. 3214–3219). IEEE.

  • Puri, R., Majumdar, A., & Ramchandran, K. (2007). Prism: A video coding paradigm with motion estimation at the decoder. IEEE Transactions on Image Processing, 16(10), 2436–2448.

    MathSciNet  Google Scholar 

  • Puri, R., & Ramchandran, K. (2003). Prism: a “reversed” multimedia coding paradigm. In 2003 International Conference on Image Processing, 2003. ICIP 2003. Proceedings (Vol. 1, pp. I-617). IEEE.

  • Purwar, S., Kar, I. N., & Jha, A. N. (2007). On-line system identification of complex systems using chebyshev neural networks. Applied Soft Computing, 7(1), 364–372.

    Google Scholar 

  • Ren, P., Shi, P., Luo, C., & Liu, Q. (2011). A new scheme for side information generation in DVC by using optical flow algorithm. In 2011 International Conference on Multimedia Technology (ICMT) (pp. 2852–2856). IEEE.

  • Rencher, A. C. (2003). Methods of multivariate analysis (Vol. 492). New York: Wiley.

    MATH  Google Scholar 

  • Rup, S., Majhi, B., & Padhy, S. (2014). An improved side information generation for distributed video coding. AEU-International Journal of Electronics and Communications, 68(3), 201–209.

    Google Scholar 

  • Skorupa, J., Slowack, J., Mys, S., Deligiannis, N., De Cock, J., Lambert, P., et al. (2012). Efficient low-delay distributed video coding. IEEE Transactions on Circuits and Systems for Video Technology, 22(4), 530–544.

    Google Scholar 

  • Slepian, D., & Wolf, J. (1973). Noiseless coding of correlated information sources. IEEE Transactions on Information Theory, 19(4), 471–480.

    MathSciNet  MATH  Google Scholar 

  • Song, J., Shen, P., Wang, K., Zhang, L., & Song, H. (2016). Can gray code improve the performance of distributed video coding? IEEE Access, 4, 4431–4441.

    Google Scholar 

  • Sun, Y. C., & Tsai, C. J. (2012). Perceptual-based distributed video coding. Journal of Visual Communication and Image Representation, 23(3), 535–548.

    Google Scholar 

  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015). Going deeper with convolutions. Cvpr.

  • Tagliasacchi, M., Tubaro, S., & Sarti, A. (2006). On the modeling of motion in Wyner–Ziv video coding. In 2006 IEEE International Conference on Image Processing (pp. 593–596). IEEE.

  • Taieb, M. H., Chouinard, J. Y., & Wang, D. (2013). Spatial correlation-based side information refinement for distributed video coding. EURASIP Journal on Advances in Signal Processing, 2013(1), 168.

    Google Scholar 

  • Thao, N. T. H., Tien, V. H., Van Xiem, H., & Duong, D. T., et al. (2016). Side information creation using adaptive block size for distributed video coding. In 2016 International conference on advanced technologies for communications (ATC) (pp. 339–343). IEEE.

  • Van Luong, H., Raket, L. L., & Forchhammer, S. (2014). Re-estimation of motion and reconstruction for distributed video coding. IEEE Transactions on Image Processing, 23(7), 2804–2819.

    MathSciNet  MATH  Google Scholar 

  • Van Luong, H., Raket, L. L., Huang, X., & Forchhammer, S. (2012). Side information and noise learning for distributed video coding using optical flow and clustering. IEEE Transactions on Image Processing, 21(12), 4782–4796.

    MathSciNet  MATH  Google Scholar 

  • Wyner, A., & Ziv, J. (1976). The rate-distortion function for source coding with side information at the decoder. IEEE Transactions on Information Theory, 22(1), 1–10.

    MathSciNet  MATH  Google Scholar 

  • Yahia, H. B., Intelligentie, K., & Reisser, M. (2016). Frame interpolation using convolutional neural networks on 2d animation. Ph.D. Thesis, MA thesis. University of Amsterdam.

  • Yan, N., Liu, D., Li, H., & Wu, F. (2017). A convolutional neural network approach for half-pel interpolation in video coding. In 2017 IEEE international symposium on circuits and systems (ISCAS) (pp. 1–4). IEEE.

  • Zhang, Y., Zhao, D., Liu, H., Li, Y., Ma, S., & Gao, W. (2012). Side information generation with auto regressive model for low-delay distributed video coding. Journal of Visual Communication and Image Representation, 23(1), 229–236.

    Google Scholar 

  • Zou, A. M., Kumar, K. D., & Hou, Z. G. (2010). Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks. IEEE Transactions on Neural Networks, 21(9), 1457–1471.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodhisattva Dash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, B., Rup, S., Mohapatra, A. et al. Decoder side Wyner–Ziv frame estimation using Chebyshev polynomial-based FLANN technique for distributed video coding. Multidim Syst Sign Process 30, 1031–1061 (2019). https://doi.org/10.1007/s11045-018-0594-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0594-0

Keywords

Navigation