Skip to main content
Log in

Superpixel based recursive least-squares method for lossless compression of hyperspectral images

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Filtering based compression methods have become a popular research topic in lossless compression of hyperspectral images. Recursive least squares (RLS) based prediction methods provide better decorrelation performance among the filtering based methods. In this paper, two superpixel segmentation based RLS methods, namely SuperRLS and B-SuperRLS, are investigated for lossless compression of hyperspectral images. The proposed methods present a novel parallelization approach for RLS based prediction method. In the first step of SuperRLS, superpixel segmentation is applied to hyperspectral image. Afterwards, hyperspectral image is partitioned into multiple small regions according to the superpixel boundaries. Each region is predicted with RLS method in parallel, and prediction residuals are encoded via arithmetic encoder. Additionally, superpixel based prediction approach provides region of interest compression capability. B-SuperRLS, which is bimodal version of SuperRLS, evaluates both spectral and spatio-spectral correlations for prediction. The performance of the proposed methods are exhaustively analysed in terms of superpixel number, input vector length and number of parallel nodes, used in the prediction. Experimental results show that the proposed parallel architecture dramatically reduces the computation time, and achieves lower bit-rate performances among the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Achanta, R., Shaji, A., Smith, K., Lucci, A., Fua, P., & Süsstrunk, S. (2012). SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2274–2282.

    Article  Google Scholar 

  • Aiazzi, B., Alparone, L., Baronti, S., & Lastri, C. (2007). Crisp and fuzzy adaptive spectral predictions for lossless and near-lossless compression of hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters, 4(4), 532–536.

    Article  Google Scholar 

  • Bascones, D., Gonzalez, C., & Mozos, D. (2017). Parallel implementation of the CCSDS 123 standard for hyperspectral lossless compression. Remote Sensing, 9(10), 973.

    Article  Google Scholar 

  • Chang, L., Chang, Y. Y., Tang, Z. S., & Huang, B. (2011). Group and region based parallel compression method using signal subspace projection and band clustering for hyperspectral imagery. IEEE Journal of Selected Topics on Applied Earth Observations and Remote Sensing, 4(3), 565–578.

    Article  Google Scholar 

  • Du, Q., Zhu, W., Yang, H., & Fowler, J. E. (2009). Segmented principal component analysis for parallel compression of hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters, 6(4), 713–717.

    Article  Google Scholar 

  • Fracastoro, G., Verdoja, F., Grangetto, M., & Magli, E. (2015). Superpixel-driven graph transform for image compression. In IEEE international conference on image processing (ICIP2015), pp. 2631–2635.

  • Fu, W., Li, S., Fang, L., & Benediktsson, J. A. (2017). Adaptive spectral-spatial compression of hyperspectral image with sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 671–681.

    Article  Google Scholar 

  • Gao, F., & Gao, S. (2016). Lossless compression of hyperspectral images using conventional recursive least squares predictor with adaptive prediction bands. Journal of Applied Remote Sensing, 10(1), 1–9.

    Google Scholar 

  • Gustafson, J. L. (1988). Reevaluating Amdahl’s law. Communication on the ACM, 31(5), 532–533.

    Article  Google Scholar 

  • Huang, B., & Srijaja, Y. (2006). Lossless compression of hyperspectral imagery via lookup tables. In Proceedings of SPIE: image and signal processing for remote sensing XII, pp. 978–981.

  • Huber-Lerner, M., Hadar, O., Rotman, S. R., & Huber-Shalem, R. (2014). Compression of hyperspectral images containing a subpixel target. IEEE Journal of Selected Topics on Applied Earth Observations and Remote Sensing, 7(6), 2246–2255.

    Article  Google Scholar 

  • Jia, S., Hu, J., Zhu, J., Jia, X., & Li, Q. (2017). Three-dimensional local binary patterns for hyperspectral imagery classification. IEEE Transactions on Geoscience and Remote Sensing, 55(4), 2399–2413.

    Article  Google Scholar 

  • Karaca, A. C., & Güllü, M. K. (2017). Lossless compression of ultraspectral sounder data using recursive least-squares. In 8th International conference on recent advances in space technologies, pp. 109–112.

  • Karaca, A. C., & Güllü, M. K. (2018). Lossless hyperspectral image compression using bimodal conventional recursive least-squares. Remote Sensing Letters, 9(1), 31–40.

    Article  Google Scholar 

  • Kiely, A. B., & Klimesh, M. A. (2009). Exploiting calibration-induced artifacts in lossless compression of hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 47(8), 2672–2678.

    Article  Google Scholar 

  • Klimesh, M. (2005). Low complexity lossless compression of hyperspectral imagery via adaptive filtering. The Interplanetary Network Progress Report, 42, 1–10.

    Google Scholar 

  • Li, C. (2017). Parallel implementation of the recursive least square for hyperspectral image compression on GPUs. KSII Transactions on Internet and Information Systems, 11(7), 3543–3557.

    Google Scholar 

  • Lin, C. C., & Hwang, Y. T. (2010). An efficient lossless compression scheme for hyperspectral images using two-stage prediction. IEEE Geoscience and Remote Sensing Letters, 7(3), 558–562.

    Article  Google Scholar 

  • Liu, Y., Gao, G., & Gu, Y. (2017). Tensor matched subspace detector for hyperspectral target detection. IEEE Transactions on Geoscience and Remote Sensing, 55(4), 1967–1974.

    Article  Google Scholar 

  • Liu, Y., Glotch, T. D., Scudder, N. A., Kraner, M. L., Condus, T., Arvidson, R. E., et al. (2016). End-member identification and spectral mixture analysis of CRISM hyperspectral data: A case study on southwest Melas Chasma, Mars. Journal of Geophysical Research: Planets, 121(10), 2004–2036.

    Google Scholar 

  • Makki, I., Younes, R., Francis, C., Bianchi, T., & Zuccehetti, M. (2017). A survey of landmine detection using hyperspectral imaging. ISPRS Journal of Photogrammetry and Remote Sensing, 124(1), 40–53.

    Article  Google Scholar 

  • Mielikainen, J. (2006). Lossless compression of hyperspectral images using lookup tables. IEEE Signal Processing Letters, 13(3), 157–160.

    Article  Google Scholar 

  • Mielikainen, J., & Huang, B. (2012). Lossless compression of hyperspecral images using clustered linear prediction with adaptive prediction length. IEEE Geoscience and Remote Sensing Letters, 9(6), 1118–1121.

    Article  Google Scholar 

  • Mielikainen, J., & Toivanen, P. (2003). Clustered DPCM for the lossless compression of hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 41(12), 2943–2946.

    Article  MATH  Google Scholar 

  • Mielikainen, J., & Toivanen, P. (2008). Lossless compression of hyperspectral images using a quantized index to lookup tables. IEEE Geoscience and Remote Sensing Letters, 5(3), 474–478.

    Article  Google Scholar 

  • Pizzolante, R., & Carpentieri, B. (2016). Multiband and lossless compression of hyperspectral images. Algorithms, 9(16), 1–14.

    MATH  Google Scholar 

  • Qian, Shen-En. (2013). Optical satellite data compression and implementation. Bellingham: SPIE Press.

    Book  Google Scholar 

  • Qian, Y., Xiong, F., Zeng, S., Zhou, J., & Tang, Y. Y. (2017). Matrix-vector nonnegative tensor factorization for blind unmixing of hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 55(3), 1776–1792.

    Article  Google Scholar 

  • Santos, L., Berrojo, L., Moreno, J., Lopez, J. F., & Sarmiento, R. (2016). Multispectral and hyperspectral compressor for space applications (HyLoC): A low-complexity FPGA implementation of the CCSDS 123 standard. IEEE Journal of Selected Topics on Applied Earth Observations and Remote Sensing, 9(2), 757–770.

    Article  Google Scholar 

  • Santos, L., Magli, E., Vitulli, R., Lopez, J. F., & Sarmiento, R. (2013). Highly-parallel GPU architecture for lossy hyperspectral image compression. IEEE Journal of Selected Topics on Applied Earth Observations and Remote Sensing, 6(2), 670–680.

    Article  Google Scholar 

  • Shen, H., Pan, W. D., & Wu, D. (2017). Predictive lossless compression of regions of interest in hyperspectral images with no-data regions. IEEE Transactions on Geoscience and Remote Sensing, 55(1), 173–182.

    Article  Google Scholar 

  • Song, J., Zhang, Z., & Chen, X. (2013). Lossless compression of hyperspectral imagery via RLS Filter. IET Electronics Letter, 49(16), 992–994.

    Article  Google Scholar 

  • Zhou, J., Kwan, C., Ayhan, B., & Eismann, M. T. (2016). A novel cluster kernel RX algorithm for anomaly and change detection using hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 54(11), 6497–6503.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Can Karaca.

Additional information

This study has been supported by TUBITAK (The Scientific and Technological Research Council of Turkey) under Project Number 116E094.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaca, A.C., Güllü, M.K. Superpixel based recursive least-squares method for lossless compression of hyperspectral images. Multidim Syst Sign Process 30, 903–919 (2019). https://doi.org/10.1007/s11045-018-0590-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0590-4

Keyword

Navigation