Arivazhagan, S., Shebiah, R. N., Nidhyanandhan, S. S., & Ganesan, L. (2010). Fruit recognition using color and texture features. Journal of Emerging Trends in Computing and Information Sciences,
1(2), 90.
Google Scholar
Bianconi, F., Ceccarelli, L., Fernández, A., & Saetta, S. A. (2014). A sequential machine vision procedure for assessing paper impurities. Computers in Industry,
65(2), 325–332.
Article
Google Scholar
Chihaoui, M., Elkefi, A., Bellil, W., & Amar, C. (2016). A novel face recognition system based on skin detection, HMM and LBP. International Journal of Computer Science and Information Security (IJCSIS),
14(6), 308–316.
Google Scholar
Chudasama, D., & Patel, T. (2015). Image segmentation using morphological operations. International Journal of Computer Applications,
117(18), 0975–8887.
Article
Google Scholar
Déniz, O., Castrillón, M., & Hernández, M. (2003). Face recognition using independent component analysis and support vector machines. Pattern Recognition Letters,
24(13), 2153–2157.
Article
MATH
Google Scholar
Furferi, R., Governi, L., & Volpe, Y. (2010). ANN-based method for olive ripening index automatic prediction. Journal of Food Engineering,
101(3), 318–328.
Article
Google Scholar
Gandhi, I., & Andiyammal, M. P. (2015). Infected Fruit Part Detection Using Clustering. International Journal of Current Research,
7(03), 13866–13871.
Google Scholar
Gatica, G., Best, S., Ceroni, J., & Lefranc, G. (2013). Olive fruits recognition using neural networks. Procedia Computer Science,
17, 412–419.
Article
Google Scholar
Guoying, Z., & Pietikainen, M. (2007). Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(6), 915–928.
Article
Google Scholar
Huang, J., Kumar, S.R., Mitra, M., Zhu, W. J., & Zabih, R. (1997). Image indexing using color correlograms. In Proceedings of IEEE international conference on computer vision and pattern recognition, (pp. 762–768).
Jitendrasinh, G. R. (2015). A review on fuzzy C-mean clustering algorithm. International Journal of Modern Trends in Engineering and Research (IJMTER), 02(02), 751–754.
Google Scholar
Khade, S., Pandhare, P., Navale, S., Patil, K., & Gaikwad, V. (2016). Fruit quality evaluation using k-means clustering segmentation approach. International Journal of Advances in Science Engineering and Technology, 4(2), 27–31.
Google Scholar
Khoje, S. A., Bodhe, S. K., & Adsul, A. (2013). Automated skin defect identification system for fruit grading based on discrete curvelet transform. International Journal of Engineering and Technology (IJET),
5(4), 3251.
Google Scholar
Vala, H. J., & Baxi, A. (2013). A review on Otsu image segmentation algorithm. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 2(2), 387–389.
Google Scholar
Kith, K., Van Wyk, B. J., & Van Wyk, M. L. A. (2008). The normalized wavelet descriptor for shape retrieval. International Journal of Wavelets, Multiresolution and Information Processing,
6(1), 25–36.
MathSciNet
Article
MATH
Google Scholar
Liu, L., Fieguth, P., Zhao, G., Pietikäinen, M., & Hu, D. (2016a). Extended local binary patterns for face recognition. Information Sciences,
358–359, 56–72.
Article
Google Scholar
Liu, L., Lao, S., Fieguth, P. W., et al. (2016b). Median robust extended local binary pattern for texture classification. IEEE Transactions on Image Processing,
25(3), 1368–1381.
MathSciNet
Article
MATH
Google Scholar
Ma, W. Y., & Zhang, H. J. (2013). Image indexing and retrieval-in handbook of grading based on discrete curvelet transform. International Journal of Engineering and Technology (IJET),
5(4), 4763–4769.
Google Scholar
Malakar, A., & Mukherjee, J. (2013). Image clustering using color moments, histogram, edge and K-means clustering. International Journal of Science and Research (IJSR),
2(1), 2319.
Google Scholar
Manual_CV-A20CL_CV-A80CL_Aug08 Digital monochrome / color HDTV (1080p) CMOS camera, 2008 JAI.
Mia, S., & Rahman, M. M. (2018). An efficient image segmentation method based on linear discriminant analysis and K-means algorithm with automatically splitting and merging clusters. International Journal of Imaging and Robotics,
18(1), 62–72.
Google Scholar
Nashat, A., & Hassan, N. (2017). Automatic segmentation and classification of olive fruits batches based on discrete wavelet transform and visual perceptual texture features. International Journal of Wavelets, Multiresolution and Information Processing,
16(1), 1850003.
MathSciNet
Article
MATH
Google Scholar
Nayagam, R. D. (2016). Implementation of external defects detection system to classify the fruits. International Journal of Innovative Research in Computer and Communication Engineering,
4(2), 1850003.
Google Scholar
Puerto, D. A., Gila, D. M. M., García, J. G., & Ortega, J. G. (2015). Sorting olive batches for the milling process using image processing. Sensors,
15, 15738–15754.
Article
Google Scholar
Pujitha, N., Swathi, C., & Kanchana, V. (2016). Detection of external defects on mango. International Journal of Applied Engineering Research,
11(7), 4763–4769.
Google Scholar
Safad, T., Kang, M., Leite, I. C. C., & Vidakovic, B. (2016). Wavelet-based spectral descriptors for detection of damage in sunflower seeds. International Journal of Wavelets, Multiresolution and Information Processing,
14(4), 1650027.
MathSciNet
Article
MATH
Google Scholar
Satone, M., Diwakar, S., & Joshi, V. (2017). Automatic bruise detection in fruits using thermal images. International Journal of Advanced Research in Computer Science and Software Engineering,
7(5), 727–732.
Article
Google Scholar
Sezgin, M., & Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging,
13, 146–165.
Article
Google Scholar
Sugiyama, M. (2006). Local fisher discriminant analysis for supervised dimensionality reduction. In Proceedings of the 23rd international conference on machine learning, Pittsburgh, PA, June 25–29 (pp. 905–912).
Suresha, M., & Danti, A. (2012). Construction of co-occurrence matrix using gabor wavelets for classification of arecanuts by decision trees. International Journal of Applied Information Systems (IJAIS),
4(6), 33.
Article
Google Scholar
Vijayarajan, R., & Muttan, S. (2016). Spatial weighted fuzzy c-means clustering based principal component averaging image fusion. International Journal of Tomography & Simulation,
29(3), 104–113.
Google Scholar
Wang, J. (2013). A visual word-based leaf classification scheme. International Journal of Applied Mathematics and Statistics,
51(22), 233–240.
Google Scholar
Zeng, Q. M., Zhu, T. L., Zhuang, X. Y., & Zheng, M. X. (2015). Periodic wavelet descriptor of plant leaf and its application in botany. International Journal of Wavelets, Multiresolution and Information Processing,
13(6), 1550043.
MathSciNet
Article
MATH
Google Scholar
Zhang, L., Yan, L., & Pingling, D. (2017a). Odor recognition in multiple e-nose systems with cross-domain discriminative subspace learning. IEEE Transactions on Instrumentation and Measurement,
66(7), 1679–1692.
Article
Google Scholar
Zhang, L., Yang, J., & Zhang, D. (2017b). Domain class consistency based transfer learning for image classification across domains. Information Sciences,
418–419, 242–257.
Article
Google Scholar
Zhang, L., & Zhang, D. (2016). Robust visual knowledge transfer via extreme learning machine-based domain adaptation. IEEE Transactions on Image Processing,
25(10), 4959–4973.
MathSciNet
Article
MATH
Google Scholar
Zhang, L., & Zhang, D. (2017). Evolutionary cost-sensitive extreme learning machine. IEEE Transactions on Neural Networks and Learning Systems,
28(12), 3045–3060.
MathSciNet
Article
Google Scholar
Zhang, L., Zuo, W., & Zhang, D. (2016). Latent sparse domain transfer learning for visual adaptation. IEEE Transactions on Image Processing,
25(3), 1177–1191.
MathSciNet
Article
MATH
Google Scholar
Zhang, Y., & Wu, L. (2012). Classification of fruits using computer vision and a multiclass support vector machine. Sensors,
12, 12489–12505.
Article
Google Scholar