Skip to main content
Log in

Edge detection methods based on modified differential phase congruency of monogenic signal

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Monogenic signal is regarded as a generalization of analytic signal from one dimensional to higher dimensional space, which has been received considerable attention in the literature. It is defined by an original signal with its isotropic Hilbert transform (the combination of Riesz transform). Similar to analytic signal, the monogenic signal can be written in the polar form. Then it provides the signal features representation, such as the local attenuation and the local phase vector. The aim of the paper is twofold: first, to analyze the relationship between the local phase vector and the local attenuation in the higher dimensional spaces. Secondly, a study on image edge detection using modified differential phase congruency is presented. Comparisons with competing methods on real-world images consistently show the superiority of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Babaud, J., Witkin, A. P., Baudin, M., & Duda, R. O. (1986). Uniqueness of the Gaussian kernel for scale-space filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1), 26–33.

    Article  MATH  Google Scholar 

  • Brackx, F., Delanghe, R., & Sommen, F. (1982). Clifford analysis (Vol. 76). Boston-London-Melbourne: Pitman.

    MATH  Google Scholar 

  • Cohen, L. (1995). Time-frequency analysis: Theory and applications. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Delanghe, R., Sommen, F., & Soucek, V. (1992). Clifford algebra and spinor valued functions. Dordrecht-Boston-London: Kluwer.

    Book  MATH  Google Scholar 

  • Felsberg, M. (2002). Low-level image processing with the structure multivector. Institut Fur Informatik Und Praktische Mathmatik, Christian-Alberchis-Universitat Kiel.

  • Felsberg, M., Duits, R., & Florack, L. (2005). The monogenic scale space on a rectanular domain and it features. Internertional Journal of Computer Vision, 64(2/3), 187–201.

    Article  Google Scholar 

  • Felsberg, M., & Sommer, G. (2001). The monogenic signal. IEEE Transactions on Signal Processing, 49(12), 3136–3144.

    Article  MathSciNet  MATH  Google Scholar 

  • Felsberg, M., & Sommer, G. (2004). The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. Journal of Mathematical Imaging and Vision, 21(1), 5–26.

    Article  MathSciNet  Google Scholar 

  • Garnet, J. (1981). Bounded analytic functions. New York: Academic Press.

    Google Scholar 

  • Hahn, S. L. (1996). Hilbert transforms in signal processing. Norwood, MD: Artech House.

    MATH  Google Scholar 

  • Iijima, T. (1959). Basic theory of pattern obsercation. In Papers of Technical Group on Automata and Automatic Control. IECE, Japan

  • Kou, K.-I., & Qian, T. (2002). The Paley–Wiener theorem in \({{\bf R}^m}\) with the Clifford analysis setting. Journal of Functional Analysis, 189, 227–241.

    Article  MathSciNet  MATH  Google Scholar 

  • Kovesi, P. (1999). Image features from phase congruency. Videre: A Journal of Computer Vision Research,1(3), 1–30.

  • Kovesi, P. (2013). Phase congruency detects corners and edges. In Proceedings DICTA.

  • Li, C., Mcintosh, A., & Qian, T. (1994). Clifford algebras, Fourier transforms, and singular convolution operators on Lipschitz surfaces. Revista Matemática Iberoamericana, 10, 665–721.

    Article  MathSciNet  MATH  Google Scholar 

  • Lindeberg, T. (1994). Scale-space theory in computer vision, The Kluwer international series in engineering and computer science. Kluwer Academic Publishers, Boston.

  • Nussenzveig, H. M. (1972). Causality and dispersion relations. London: Academic Press.

    MATH  Google Scholar 

  • Pei, S., Huang, J., Ding, J., & Guo, G. (2008). Short response Hilbert transform for edge detection. IEEE Asia Pacific conference on circuits and systems (pp. 340–343).

  • Yang, Y., Dang, P., & Qian, T. (2015). Space-frequency analysis in higher dimensions and applications. Annali di Mathematica, 194(4), 953–968.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, Y., & Kou, K.-I. (2014). Uncertainty principles for hypercomplex signals in the linear canonical transform domains. Signal Processing, 95, 67–75.

    Article  Google Scholar 

  • Yang, Y., Qian, T., & Sommen, F. (2012). Phase derivative of monogenic functions in higher dimensional spaces. Complex Analysis and Operator Theory, 6(5), 987–1010.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, L., & Zhang, D. (2016a). Visual understanding via multi-feature shared learning with global consistency. IEEE Transactions on Multimedia, 18(2), 247–259.

    Article  Google Scholar 

  • Zhang, L., & Zhang, D. (2016b). Robust visual knowledge transfer via extreme learning machine-based domain adaptation. IEEE Transactions on Image Processing, 25(10), 4959–4973.

    Article  MathSciNet  Google Scholar 

  • Zhang, L., Zuo, W., & Zhang, D. (2016). LSDT: latent sparse domain transfer learning for visual adaptation. IEEE Transactions on Image Processing, 25(3), 247–259.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Funds (No. 11401606) and University of Macau (No. MYRG2015-00058-L2-FST) and the Macao Science and Technology Development Fund (FDCT/099/2012/A3 and FDCT/031/2016/A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kit Ian Kou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Kou, K.I. & Zou, C. Edge detection methods based on modified differential phase congruency of monogenic signal. Multidim Syst Sign Process 29, 339–359 (2018). https://doi.org/10.1007/s11045-016-0468-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0468-2

Keywords

Mathematics Subject Classification

Navigation