Skip to main content
Log in

Minimum sensitivity based robust beamforming with eigenspace decomposition

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

An enhanced eigenspace-based beamformer (ESB) derived using the minimum sensitivity criterion is proposed with significantly improved robustness against steering vector errors. The sensitivity function is defined as the squared norm of the appropriately scaled weight vector and since the sensitivity function of an array to perturbations becomes very large in the presence of steering vector errors, it can be used to find the best projection for the ESB, irrespective of the distribution of additive noises. As demonstrated by simulation results, the proposed method has a better performance than the classic ESBs and the previously proposed uncertainty set based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57(8), 1408–1418.

    Article  Google Scholar 

  • Carlson, B. D. (1988). Covariance-matrix estimation errors and diagonal loading in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems, 24(4), 397–401.

    Article  Google Scholar 

  • Cox, H., Zeskind, R. M., & Owen, M. M. (1987). Robust adaptive beamforming. IEEE Transactions on Acoustics Speech and Signal Processing, 35(10), 1365–1376.

    Article  Google Scholar 

  • Feldman, D. D., & Griffiths, L. J. (1994). A projection approach for robust adaptive beamforming. IEEE Transactions on Signal Processing, 42(4), 867–876.

    Article  Google Scholar 

  • Li, J., Stoica, P., & Wang, Z. S. (2003). On robust Capon beamforming and diagonal loading. IEEE Transactions on Signal Processing, 51(7), 1702–1715.

    Article  Google Scholar 

  • Li, J., Stoica, P., & Wang, Z. S. (2004). Doubly constrained robust Capon beamformer. IEEE Transactions on Signal Processing, 52(9), 2407–2423.

    Article  Google Scholar 

  • Rübsamen, M., & Pesavento, M. (2013). Maximally robust Capon beamformer. IEEE Transactions on Signal Processing, 61(8), 2030–2041.

    Article  Google Scholar 

  • Somasundaram, S. (2011). Reduced dimension robust Capon beamforming for large aperture passive sonar arrays. IET Radar, Sonar and Navigation, 5(7), 707–715.

    Article  Google Scholar 

  • Van Trees, H. L. (2002). Optimum array processing, part IV of detection, estimation, and modultion theory. New York: Wiley.

    Google Scholar 

  • Vorobyov, S. A., Gershman, A. B., & Luo, Z. Q. (2003). Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem. IEEE Transactions on Signal Processing, 51(2), 313–324.

    Article  Google Scholar 

  • Wen, F. X., Ng, B. P., & Reddy, V. (2013). Extending the concept of IIR filtering to array processing using approximate spatial IIR structure. Multidimensional Systems and Signal Processing, 24(1), 157–179.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, J., Liao, G. S., Li, J., Lei, Y., & Wang, X. (2015). Robust beamforming with imprecise array geometry using steering vector estimation and interference covariance matrix reconstruction. Multidimensional Systems and Signal Processing. doi:10.1007/s11045-015-0350-7.

  • Zhang, L., & Liu, W. (2012). Robust forward backward based beamformer for a general-rank signal model with real-valued implementation. Signal Process, 92, 163–169.

    Article  Google Scholar 

  • Zhang, Z. Y., Liu, W., Leng, W., Wang, A. G., & Shi, H. P. (2016). Interference-plus-Noise covariance matrix reconstruction via spatial power spectrum sampling for robust adaptive beamforming. IEEE Signal Processing Letters, 23, 121–125.

    Article  Google Scholar 

  • Zhang, X. R., Liu, Z. W., Xu, Y. G., & Liu, W. (2015). Adaptive tensorial beamformer based on electromagnetic vector-sensor arrays with coherent interferences. Multidimensional Systems and Signal Processing, 26(3), 803–821.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, Y., & Ng, B. P. (2010). MUSIC-like DOA estimation without estimating the number of sources. IEEE Transactions on Signal Processing, 58(3), 1668–1676.

    Article  MathSciNet  Google Scholar 

  • Zhang, W., Wang, J., & Wu, S. (2013). Robust Capon beamforming against large DOA mismatch. Signal Processing, 93(4), 804–810.

    Article  Google Scholar 

  • Zhang, W., Wang, J., & Wu, S. (2013). Robust minimum variance multiple-input multiple-output radar beamformer. IET Signal Processing, 7(9), 854–862.

    Article  Google Scholar 

  • Zhang, W., Wang, J., & Wu, S. (2014). Adaptive multiple-input multiple-output radar beamforming based on direct data domain approach. IET Radar, Sonar and Navigation, 8(6), 632–638.

    Article  Google Scholar 

  • Zhao, Y., & Liu, W. (2013). Robust fixed frequency invariant beamformer design subject to norm-bounded errors. IEEE Signal Processing Letters, 20(2), 169–172.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, W. & Liu, W. Minimum sensitivity based robust beamforming with eigenspace decomposition. Multidim Syst Sign Process 29, 687–701 (2018). https://doi.org/10.1007/s11045-016-0424-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0424-1

Keywords

Navigation