Skip to main content
Log in

Extending depth of field and dynamic range from differently focused and exposed images

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Focus stacking and high dynamic range (HDR) imaging are two paradigms of computational photography. Focus stacking aims to produce an image with greater depth of field (DOF) from a set of images taken with different focus distances; HDR imaging aims to produce an image with higher dynamic range from a set of images taken with different exposure values. In this paper, we present an algorithm which combines focus stacking and HDR imaging in order to produce an image with both extended DOF and dynamic range from a set of differently focused and exposed images. The key step in our algorithm is focus stacking regardless of the differences in exposure values of input images. This step includes photometric and spatial registration of images, and image fusion to produce all-in-focus images. This is followed by HDR radiance estimation and tonemapping. We provide experimental results with real data to illustrate the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aguet, F., Van De Ville, D., & Unser, M. (2008). Model-based 2.5-d deconvolution for extended depth of field in brightfield microscopy. IEEE Transactions on Image Processing, 17(7), 1144–1153.

  • Antunes, M., Trachtenberg, M., Thomas, G., & Shoa, T. (2005). All-in-focus imaging using a series of images on different focal planes. Proceedings of International Conference on Image Analysis and Recognition, 3656, 174–181.

  • Burt, P. J., & Kolczynski, R. J. (1993). Enhanced image capture through fusion. In: Proceedings of International Conference on Computer Vision, May 1993, pp. 173–182.

  • Debevec, P., & Malik, J. (1997). Recovering high dynamic range radiance maps from photographs. In: Proceedings of ACM Conference on Computer Graphics and Interactive Techniques, pp. 369–378.

  • Durand, F., & Dorsey, J. (2002). Fast bilateral filtering for the display of high-dynamic-range images. ACM Transactions on Graphics, 21, 257–266.

    Google Scholar 

  • Fattal, R., Lischinski, D., & Werman, M. (2002). Gradient domain high dynamic range compression. ACM Transactions on Graphics, 21, 249–256.

    Article  Google Scholar 

  • Forster, B., Van De Ville, D., Berent, J., Sage, D., & Unser, M. (2004). Complex wavelets for extended depth-of-field: A new method for the fusion of multichannel microscopy images. Microscopy Research and Technique, 65, 33–42.

    Article  Google Scholar 

  • Gevrekci, M., & Gunturk, B. K. (2007). On geometric and photometric registration of images. Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing, 1, 1261–1264.

  • Gevrekci, M., & Gunturk, B. K. (2007). Superresolution under photometric diversity of images. EURASIP Journal on Advances in Signal Processing, 360761, 1–12.

    MATH  Google Scholar 

  • Gevrekci, M., & Gunturk, B. K. (2009). Illumination robust interest point detection. Computer Vision and Image Understanding, 113(4), 565–571.

    Article  Google Scholar 

  • Grossberg, M. D., & Nayar, S. K. (2003). Determining the camera response from images: What is knowable? IEEE Transactions of Pattern Analysis and Machine Intelligence, 25, 1455–1467.

    Article  Google Scholar 

  • Gunturk, B. K., & Gevrekci, M. (2006). High-resolution image reconstruction from multiple differently exposed images. IEEE Signal Processing Letters, 13(4), 197–200.

    Article  Google Scholar 

  • Hossain, I., & Gunturk, B. K. (2011). High dynamic range imaging of non-static scenes. Proceedings of SPIE Electronic Imaging, 7876, pp. 78 760P1–78 760P9.

  • Huang, W., & Jing, Z. (2007). Evaluation of focus measures in multi-focus image fusion. Pattern Recognition Letters, 28(4), 493–500.

    Article  Google Scholar 

  • Li, H., Manjunath, B. S., & Mitra, S. K. (1995). Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing, 57(3), 235–245.

    Article  Google Scholar 

  • Li, S., Kwok, J. T., & Wang, Y. (2001). Combination of images with diverse focuses using the spatial frequency. Information Fusion, 2(3), 169–176.

    Article  Google Scholar 

  • Liu, C. (2009). Beyond pixels: Exploring new representations and applications for motion analysis. In: Doctoral Thesis. Massachusetts Institute of Technology, 2009.

  • Mann, S., & Mann, R. (2001). Quantigraphic imaging: Estimating the camera response and exposures from differently exposed images. Proceedings of International Conference on Computer Vision, 1, 842–849.

  • Mitsunaga, T., & Nayar, S. K. (1999). Radiometric self calibration. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2, 374–380.

  • Mitsunaga, T., & Nayar, S. (2000). High dynamic range imaging: Spatially varying pixel exposures. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1, pp. 472–479.

  • Pattanaik, S. N., Tumblin, J., Yee, H., & Greenberg, D. P. (2000). Time-dependent visual adaptation for fast realistic image display. In: Proceedings of ACM Conference on Computer Graphics and Interactive Techniques, pp. 47–54.

  • Pertuz, S., Puig, D., Garcia, M. A., & Fusiello, A. (2013). Generation of all-in-focus images by noise-robust selective fusion of limited depth-of-field images. IEEE Transactions on Image Processing, 22(3), 1242–1251.

    Article  MathSciNet  Google Scholar 

  • Pieper, R. J., & Korpel, A. (1983). Image processing for extended depth of field. Applied Optics, 22(10), 1449–1453.

    Article  Google Scholar 

  • Qian, Q., Gunturk, B. K., & Batur, A. U. (2013). Joint focus stacking and high dynamic range imaging. In: Proceedings of SPIE Electronic Imaging, pp. 8 660 041–8 660 047.

  • Reinhard, E., Stark, M., Shirley, P., & Ferwerda, J. (2002). Photographic tone reproduction for digital images. ACM Transactions on Graphics, 21, 267–276.

    Article  Google Scholar 

  • Subbarao, M., & Choi, T. (1998). Selecting the optimal focus measure for autofocusing and depth-from-focus. IEEE Transactions Pattern Analysis and Machine Intelligence, 20(8), 864–870.

    Article  Google Scholar 

  • Sugimoto, S. A., & Ichioka, Y. (1985). Digital composition of images with increased depth of focus considering depth information. Applied Optics, 24(14), 2076–2080.

    Article  Google Scholar 

  • Tian, J., Chen, L., Ma, L., & Yu, W. (2011). Multi-focus image fusion using a bilateral gradient-based sharpness criterion. Optics Communications, 284(1), 80–87.

    Article  Google Scholar 

  • Valdecasas, A. G., Marshall, D., Becerra, J. M., & Terrero, J. J. (2001). On the extended depth of focus algorithms for bright field microscopy. Micron, 32(6), 559–569.

    Article  Google Scholar 

  • Ward, G. (2003). Fast, robust image registration for compositing high dynamic range photographs from handheld exposures. Journal of Graphics Tools, 8, 17–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahadir K. Gunturk.

Additional information

This work is supported in part by Texas Instruments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Q., Gunturk, B.K. Extending depth of field and dynamic range from differently focused and exposed images. Multidim Syst Sign Process 27, 493–509 (2016). https://doi.org/10.1007/s11045-015-0315-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0315-x

Keywords

Navigation