Skip to main content
Log in

Linearization of bivariate polynomial matrices expressed in non monomial basis

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The paper proposes a two step algorithm that reduces a bivariate polynomial matrix \(T\left( s,z\right) \) expressed in Newton or Lagrange base to a bivariate matrix pencil \(A+E_{1}s+E_{2}z\) with the same invariant polynomials and zero structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiraslani, A., Corless, R., & Lancaster, P. (2009). Linearization of matrix polynomials expressed in polynomial bases. IMA Journal of Numerical Analysis, 29(1), 141–157.

    Article  MATH  MathSciNet  Google Scholar 

  • Aruliah, D. A., Corless, R. M., Gonzalez-Vega, L., & Shakoori, A. (2007). Companion matrix pencils for hermite interpolants. In Proceedings of the 2007 international workshop on symbolic-numeric computation, SNC’07 (pp. 197–198).

  • Bosgra, O., & Van Der Weiden, A. (1981). Realizations in generalized state-space form for polynomial system matrices and the definitions of poles, zeros and decoupling zeros at infinity. International Journal of Control, 33, 393–411.

    Article  MATH  MathSciNet  Google Scholar 

  • Boudellioua, M. S. (2006). An equivalent matrix pencil for bivariate polynomial matrices. International Journal of Applied Mathematics and Computer Science, 16(2), 175–181.

    MATH  MathSciNet  Google Scholar 

  • Corless, R., & Litt, G. (2001). Generalized companion matrices for polynomials not expressed in monomial bases, applied math. Technical report University of Western Ontario.

  • Corless, R. M. (2004). Generalized companion matrices in the lagrange basis. In L. GonzalezVega, T. Recio, (Eds.), Proceedings EACA (pp. 317–322).

  • Corless, R. M. (2007). On a generalized companion matrix pencil for matrix polynomials expressed in the Lagrange basis. In Symbolic-numeric computation. Invited and contributed presentations given at the international workshop (SNC’2005), Xi’an, China, (pp. 1–15) Basel: Birkhäuser. 19–21 July (2005).

  • Gałkowski, K. (1997a). Elementary operation approach to state-space realizations of 2-D systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 44(2), 120–129.

    Article  MATH  Google Scholar 

  • Gałkowski, K. (1997b). State-space realizations of multi-input multi-output systems—elementary operations approach. International Journal of Control, 66(1), 119–144.

    Article  MATH  MathSciNet  Google Scholar 

  • Gantmacher, F. (1959). Applications of the theory of matrices, Vol. IX. New York-London: Interscience Publishers, 317 p.

  • Hayton, G. E., Walker, A. B., & Pugh, A. C. (1989). Matrix pencil equivalents of general polynomial matrix. International Journal of Control, 49(6), 1979–1987.

    Article  MATH  MathSciNet  Google Scholar 

  • Hayton, G. E., Walker, A. B., & Pugh, A. C. (1990). Infinite frequency structure-preserving transformations for general polynomial system matrices. International Journal of Control, 52(1), 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  • Johnson, D. (1993). Coprimeness in multidimensional system theory and symbolic computation. Ph.D. Thesis, Loughborough: University of Technology.

  • Jury, E. (1978). Stability of multidimensional scalar and matrix polynomials. Memorandum (University of California, Berkeley, Electronics Research Laboratory), Electronics Research Laboratory, College of Engineering, University of California.

  • Kaczorek, T. (1988). The singular general model of 2-D systems and its solution. IEEE Transactions on Automatic Control, 33(11), 1060–1061.

    Article  MATH  MathSciNet  Google Scholar 

  • Karampetakis, N., & Vardulakis, A. (1992). Matrix fractions and full system equivalence. IMA Journal of Mathematical Control and Information, 9(2), 147–160.

    Article  MATH  MathSciNet  Google Scholar 

  • Karampetakis, N., & Vardulakis, A. (1993). Generalized state-space system matrix equivalents of a Rosenbrock system matrix. IMA Journal of Mathematical Control and Information, 10(4), 323–344.

    Article  MATH  MathSciNet  Google Scholar 

  • Karampetakis, N. P., Vardulakis, A. I., & Pugh, A. C. (1995). A classification of generalised state space reduction methods for linear multivariable systems. Kybernetika, 31(6), 547–557.

    MATH  MathSciNet  Google Scholar 

  • Karampetakis, N. P. (2010). Matrix pencil equivalents of symmetric polynomial matrices. Asian Journal of Control, 12(2), 177–186.

    Article  MathSciNet  Google Scholar 

  • Lévy, B. (1981). 2-D polynomial and rational matrices, and their applications for the modeling of 2-D dynamical systems. Ph.D. Thesis, Stanford: Stanford University.

  • Lewis, F. (1992). A review of 2-D implicit systems. Automatica, 28(2), 345–354.

    Article  MATH  MathSciNet  Google Scholar 

  • Lin, Z., Boudellioua, M., & Xu, L. (2006). On the equivalence and factorization of multivariate polynomial matrices. In Proceedings of 2006 IEEE International Symposium on Circuits and Systems (pp. 4911–4914).

  • Pugh, A. C., Hayton, G. E., & Fretwell, P. (1987). Transformations of matrix pencils and implications in linear systems theory. International Journal of Control, 45, 529–548.

    Article  MATH  MathSciNet  Google Scholar 

  • Pugh, A. C., McInerney, S. J., Boudellioua, M. S., & Hayton, G. E. (1998a). Matrix pencil equivalents of a general 2-D polynomial matrix. International Journal of Control, 71(6), 1027–1050.

    Article  MATH  MathSciNet  Google Scholar 

  • Pugh, A. C., McInerney, S. J., Boudellioua, M. S., Johnson, D. S., & Hayton, G. E. (1998b). A transformation for 2-D linear systems and a generalization of a theorem of Rosenbrock. International Journal of Control, 71(3), 491–503.

    Article  MATH  MathSciNet  Google Scholar 

  • Pugh, A., & McInerney, S. J. (2005). Equivalence and reduction of 2-D systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(5), 271–275.

    Article  Google Scholar 

  • Pugh, A. C., & Shelton, A. K. (1978). On a new definition of strict system equivalence. International Journal of Control, 27(5), 657–672.

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenbrock, H. (1970). State-space and multivariable theory, Studies in Dynamical Systems Series. Wiley Interscience Division.

  • Shakoori, A. (2008). Bivariate polynomial solver by values. Canadian theses, Library and Archives Canada.

  • Smith, M. (1981). Matrix fractions and strict system equivalence. International Journal of Control, 34, 869–883.

    Article  MATH  MathSciNet  Google Scholar 

  • Uetake, Y., & Okubo, S. (1988). Solvability, stability and invertibility for 2-D descriptor systems. Transactions of the Society of Instrument and Control Engineers, 24(7), 755–757.

    Article  Google Scholar 

  • Wolovich, W. (1974). Linear multivariable systems. In Applied Mathematical Sciences. 11. New York–Heidelberg–Berlin: Springer. IX, 358 p. (with 28 illus. DM 23.30).

  • Wood, J., Oberst, U., Rogers, E., & Owens, D. H. (2000). A behavioral approach to the pole structure of one-dimensional and multidimensional linear systems. SIAM Journal on Control and Optimization, 38(2), 627–661.

    Article  MATH  MathSciNet  Google Scholar 

  • Zerz, E. (1996). Primeness of multivariate polynomial matrices. Systems & Control Letters, 29(3), 139–145.

    Article  MATH  MathSciNet  Google Scholar 

  • Zaris, P., Wood, J., & Rogers, E. (2001). Controllable and uncontrollable poles and zeros of \(n\)D systems. MCSS Mathematics of Control, Signals, and Systems, 14(3), 281–298.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: ARCHIMEDES III. Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas P. Karampetakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karetsou, A.S., Karampetakis, N.P. Linearization of bivariate polynomial matrices expressed in non monomial basis. Multidim Syst Sign Process 26, 503–517 (2015). https://doi.org/10.1007/s11045-014-0278-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-014-0278-3

Keywords

Mathematics Subject Classification

Navigation