Skip to main content
Log in

Relative parametrization of linear multidimensional systems

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In the last chapter of his book “The Algebraic Theory of Modular Systems” published in 1916, F. S. Macaulay developped specific techniques for dealing with “unmixed polynomial ideals” by introducing what he called “inverse systems”. The purpose of this paper is to extend such a point of view to differential modules defined by linear multidimensional systems, that is by linear systems of ordinary differential or partial differential equations of any order, with any number of independent variables, any number of unknowns and even with variable coefficients. The first and main idea is to replace unmixed polynomial ideals by pure differential modules. The second idea is to notice that a module is \(0\)-pure if and only if it is torsion-free and thus if and only if it admits an “absolute parametrization” by means of arbitrary potential like functions, or, equivalently, if it can be embedded into a free module by means of an “absolute localization”. The third idea is to refer to a difficult theorem of algebraic analysis saying that an \(r\)-pure module can be embedded into a module of projective dimension \(r\), that is a module admitting a projective resolution with exactly \(r\) operators. The fourth and final idea is to establish a link between the use of extension modules for such a purpose and specific formal properties of the underlying multidimensional system through the use of “involution” and a ‘relative localization” leading to a “relative parametrization”. The paper is written in a rather effective self-contained way and we provide many explicit examples that should become test examples for a future use of computer algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barakat, M. (2009). Spectral filtration via generalized morphisms, Preprint arXiv: 0904.0240, Submitted for publication.

  • Barakat, M. (2010). Purity filtration and the fine structure of autonomy. In Proceedings of the 19th international symposium on mathematical theory of networks and systems, pp. 1657–1661.

  • Bjork, J. E. (1993). Analytic D-modules and applications. Dordrecht: Kluwer.

  • Bourbaki, N. (1980). Algèbre homologique chap. X. Paris: Masson.

    Google Scholar 

  • Bourbaki, N. (1985). Algèbre commutative, Chap. I–IV. Paris: Masson.

    Google Scholar 

  • Buchberger, B. (1985). Gröbner bases: an algorithmic methods in polynomial ideal theory. In N. K. Bose (Ed.), Recent trends in multidimensional system theory (pp. 184–232). Dordrecht: Reidel.

    Chapter  Google Scholar 

  • Cosserat, E., & Cosserat, F. (1909). Théorie des Corps Déformables. Paris: Hermann.

    Google Scholar 

  • Gröbner, W. (1939). Über die Algebraischen Eigenschaften der Integrale von Linearen Differentialgleichungen mit Konstanten Koeffizienten. Monatshefte für Mathematik und Physik, 47, 247–284.

  • Janet, M. (1920). Sur les Systèmes aux dérivées partielles. Journal de Math., 8(3), 65–151.

    Google Scholar 

  • Kalman, E. R., Yo, Y. C., & Narenda, K. S. (1963). Controllability of Linear Dynamical Systems. Contribution of Differential Equations, 1(2), 189–213.

    Google Scholar 

  • Kashiwara M. (1995). Algebraic study of systems of partial differential equations. Mémoires de la Société Mathématique de France, (Vol. 63), (Transl. from Japanese of his 1970 Master’s Thesis).

  • Kunz, E. (1985). Introduction to commutative algebra and algebraic geometry. Basel: Birkhäuser.

    MATH  Google Scholar 

  • Macaulay, F. S. (1964). The algebraic theory of modular systems, Cambridge Tracts, vol. 19, Cambridge University Press, London, 1916. Stechert-Hafner Service Agency, New-York

  • Maisonobe, P., & Sabbah, C. (1993). D-Modules Cohérents et Holonomes, Travaux en Cours, 45. Paris: Hermann.

  • Northcott, D. G. (1966). An introduction to homological algebra. Cambridge: Cambridge University Press.

    Google Scholar 

  • Northcott, D. G. (1968). Lessons on rings, modules and multiplicities. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Palamodov, V. P. (1970). Linear differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften (Vol. 168). Berlin: Springer.

    Book  Google Scholar 

  • Pommaret, J.-F. (1995). Dualité différentielle et applications. C. R. Acad. Sci. Paris, 320, Série I, 1225–1230

  • Pommaret, J.-F. (1994). Partial differential equations and group theory: New perspectives for applications. Dordrecht: Kluwer. doi:10.1007/978-94-017-2539-2.

  • Pommaret, J.-F. (2001). Partial differential control theory. Dordrecht: Kluwer.

    Book  MATH  Google Scholar 

  • Pommaret, J.-F. (2005). Algebraic analysis of control systems defined by partial differential equations. In Advanced topics in control systems theory, Lecture notes in control and information sciences LNCIS 311, (Chap. 5, pp. 155–223). Springer.

  • Pommaret, J.-F. (2010). Parametrization of Cosserat equations. Acta Mechanica, 215, 43–55.

    Article  MATH  Google Scholar 

  • Pommaret, J.-F. (2011). Macaulay inverse systems revisited. Journal of Symbolic Computation, 46, 1049–1069.

    Article  MATH  MathSciNet  Google Scholar 

  • Pommaret, J.-F. (2012). Spencer operator and applications: From continuum mechanics to mathematical physics. In Yong G. (Ed.) Continuum mechanics: Progress in fundamentals and engineering applications. ISBN: 978-953-51-0447-6, InTech, 2012, Available from: http://www.intechopen.com/books/continuum-mechanics-progress-in-fundamentals-and-engineerin-applications/spencer-operator-and-applications-from-continuum-mechanics-to-mathematical-physics.

  • Pommaret, J.-F. (2013). The mathematical foundations of general relativity revisited. Journal of Modern Physics, 4, 223–239. doi:10.4236/jmp.2013.48A022.

  • Pommaret, J.-F., & Quadrat, A. (1999a). Localization and parametrization of linear multidimensional control systems. Systems & Control Letters, 37, 247–260.

    Article  MATH  MathSciNet  Google Scholar 

  • Pommaret, J.-F., & Quadrat, A. (1999b). Algebraic analysis of linear multidimensional control systems. IMA Journal of Mathematical Control and Informations, 16, 275–297.

    Article  MATH  MathSciNet  Google Scholar 

  • Quadrat, A. (1999). Analyse Algébrique des Systèmes de Contrôle Linéaires Multidimensionnels, Thèse de Docteur de l’Ecole Nationale des Ponts et Chaussées (http://www-sop.inria.fr/cafe/Alban.Quadrat/index.html).

  • Quadrat, A. (2010). Une Introduction à l’Analyse Algébrique Constructive et à ses Applications, INRIA Research Report 7354, AT-SOP Project, July 2010. Les Cours du CIRM, 1 no. 2: Journées Nationales de Calcul Formel (2010), pp. 281–471 (doi:10.5802/ccirm.11).

  • Quadrat, A. (2013). Grade filtration of linear functional systems. Acta Applicandae Mathematicae, 127, 27–86, doi:10.1007/s10440-012-9791-2 (see also http://hal.inria.fr/inria-00632281/fr/ and http://pages.saclay.inria.fr/alban.quadrat/PurityFiltration.html).

  • Rotman, J. J. (1979). An introduction to homological algebra, pure and applied mathematics. London: Academic Press.

    Google Scholar 

  • Seiler, W. M. (2009). Involution: The formal theory of differential equations and its applications to computer algebra. Springer, 660 pp. (See also doi:10.3842/SIGMA.2009.092 for a recent presentation of involution, in particular sections 3 (p 6 and reference [11], [22]) and 4).

  • Spencer, D. C. (1965). Overdetermined systems of partial differential equations. Bull. Am. Math. Soc., 75, 1–114.

    Google Scholar 

  • Zariski, O., & Samuel, P. (1958). Commutative algebra. Princeton: Van Nostrand.

    MATH  Google Scholar 

  • Zerz, E. (2000). Topics in multidimensional linear systems theory. In Lecture notes in control and information sciences, (Vol. 256). Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Francois Pommaret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pommaret, JF. Relative parametrization of linear multidimensional systems. Multidim Syst Sign Process 26, 405–437 (2015). https://doi.org/10.1007/s11045-013-0265-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-013-0265-0

Keywords

Navigation