Skip to main content
Log in

Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a computationally efficient two-dimensional (2-D) direction-of-arrival (DOA) estimation algorithm based extended-aperture for acoustic coherent signals impinging on a sparse acoustic vector-sensor array. The coherency of incident signals is decorrelated through matrix averaging and the signal/noise subspaces are reconstructed through a linear operation of a matrix formed from the cross-correlations between some sensor data, where the effect of additive noise is eliminated. Consequently, DOAs can be estimated without performing eigen-decomposition (into signal/noise subspaces), and there is no need to evaluate all correlations of the array data. The derived estimates are automatically matched by translating eigenvalues into real-valued ones, furthermore, the proposed method can achieve the unambiguous direction estimates with enhanced accuracy by setting the vector sensors to space much farther apart than a half-wavelength, and it is also suitable for the case of spatially nonuniform noise, which may be more realistic scenario for the sparsely placed sensors. The performance of the proposed method is demonstrated through numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdi A., Guo H. (2009) Signal correlation modeling in acoustic vector sensor arrays. IEEE Transactions on Signal Processing 57(3): 892–903

    Article  Google Scholar 

  • Chen C., Lorenzelli F., Ralph Hudson K., Yao E. (2008) Stochastic maximum-likelihood DOA estimation in the presence of unknown nonuniform noise. IEEE Transactions on Signal Processing 56(7): 3038–3044

    Article  MathSciNet  Google Scholar 

  • Hawkes M., Nehorai A. (2000) Acoustic vector-sensor processing in the presence of a reflecting boundary. IEEE Transactions on Signal Processing 48(11): 2981–2993

    Article  Google Scholar 

  • Hawkes M., Nehorai A. (2003) Wideband source localization using a distributed acoustic vector-sensor array. IEEE Transactions on Signal Processing 51(6): 1479–1491

    Article  MathSciNet  Google Scholar 

  • He J., Liu Z. (2009) Computationally efficient underwater acoustic 2-D source localization with arbitrarily spaced vector hydrophones at unknown locations using the propagator method. Multidimensional Systems and Signal Processing 20(3): 285–296

    Article  MATH  Google Scholar 

  • Hurtado M., Nehorai A. (2007) Performance analysis of passive low-grazing-angle source localization in maritime environments using vector sensors. IEEE Transactions on Aerospace and Electronic Systems 43(2): 780–789

    Article  Google Scholar 

  • Liu T. H., Mendel J. M. (1998) Azimuth and elevation direction finding using arbitrary array geometries. IEEE Transactions on Signal Processing 46(7): 2061–2065

    Article  Google Scholar 

  • Marcos S., Marsal A., Benidir M. (1995) The propagator method for source bearing estimation. Signal Processing 42: 121–138

    Article  Google Scholar 

  • Nehorai A., Paldi E. (1994) Acoustic vector-sensor array processing. IEEE Transactions on Signal Processing 42(9): 2481–2491

    Article  Google Scholar 

  • Pesavento M., Gershman A. B. (2001) Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise. IEEE Transactions on Signal Processing 49(7): 1310–1324

    Article  Google Scholar 

  • Pillai S. U. (1989) Array signal processing. Springer, New York

    Book  Google Scholar 

  • Pillai S. U., Won B. H. K. (1989) Forward/backward spatial smoothing techniques for coherent signals identification. IEEE Transactions on Acoustics Speech and Signal Processing 37: 8–15

    Article  MATH  Google Scholar 

  • Roy R., Kailath T. (1989) ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics Speech and Signal Processing 37: 984–995

    Article  Google Scholar 

  • Schmidt R. O. (1986) Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas Propagation 34: 276–280

    Article  Google Scholar 

  • Shan T. J., Wax M., Kailath T. (1985) On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Transactions on Acoustics Speech and Signal Processing 33: 806–811

    Article  Google Scholar 

  • Tao J., Chang W., Cui W. (2007) Vector field smoothing for DOA estimation of coherent underwater acoustic signals in presence of a reflecting boundary. IEEE Sensors Journal 7(8): 1152–1158

    Article  Google Scholar 

  • Tao J., Chang W., Shi Y. (2008) Direction-finding of coherent sources via ‘particle-velocity-field smoothing. IET Radar, Sonar and Navigation 2(2): 127–134

    Article  Google Scholar 

  • Tayem N., Kwon H. M. (2005) L-shape 2-dimensional arrival angle estimation with propagator method. IEEE Transactions on Antennas Propagation 53(5): 1622–1630

    Article  Google Scholar 

  • Wong K. T., Zoltowski M. D. (1997a) Closed-form underwater acoustic direction-finding with arbitrarily spaced vector hydrophones at unknown locations. IEEE Journal of Oceanic Engineering 22(3): 566–575

    Article  Google Scholar 

  • Wong K. T., Zoltowski M. D. (1997b) Extended-aperture underwater acoustic multi-source azimuth/ elevation direction-finding using uniformly but sparsely spaced vector hydrophones. IEEE Journal of Oceanic Engineering 22(4): 659–672

    Article  Google Scholar 

  • Wong K. T., Zoltowski M. D. (2000) Self-initiating MUSIC-based direction finding in underwater acoustic particle velocity-field beamspace. IEEE Journal of Oceanic Engineering 25(2): 262–273

    Article  Google Scholar 

  • Wu Y., Liao G., So H. C. (2003) A fast algorithm for 2-D direction-of-arrival estimation. Signal Processing 83: 1827–1831

    Article  MATH  Google Scholar 

  • Xin J., Sano A. (2005) Efficient subspace-based algorithm for adaptive bearing estimation and tracking. IEEE Transactions on Signal Processing 53(12): 4485–4505

    Article  MathSciNet  Google Scholar 

  • Xu Y., Liu Z., Cao J. (2007) Perturbation analysis of conjugate MI-ESPRIT for single acoustic vector-sensor-based noncircular signal direction finding. Signal Processing 87(7): 1597–1612

    Article  MATH  Google Scholar 

  • Zoltowski M. D., Wong K. T. (2000) Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform Cartesian array grid. IEEE Transactions on Signal Processing 48(8): 2205–2210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoting Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Ruan, X. & He, J. Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array. Multidim Syst Sign Process 24, 105–120 (2013). https://doi.org/10.1007/s11045-011-0158-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-011-0158-z

Keywords

Navigation