A Stochastic Analysis of Performance Limits for Optical Microscopes

Abstract

The optical microscope is a powerful instrument for observing cellular events. Recently, the increased use of microscopy in quantitative biological research, including single molecule microscopy, has generated significant interest in determining the performance limits of an optical microscope. Here, we formulate this problem in the context of a parameter estimation approach in which the acquired imaging data is modeled as a spatio-temporal stochastic process. We derive formulations of the Fisher information matrix for models that allow both stationary and moving objects. The effects of background signal, detector size, pixelation and noise sources are also considered. Further, formulations are given that allow the study of defocused objects. Applications are discussed for the special case of the estimation of the location of objects, especially single molecules. Specific emphasis is placed on the derivation of conditions that guarantee block diagonal or diagonal Fisher information matrices.

References

  1. N. Bobroff (1986) ArticleTitlePosition measurement with a resolution and noise limited instrument Review of Scientific Instruments. 57 IssueID6 1152–1157 Occurrence Handle10.1063/1.1138619

    Article  Google Scholar 

  2. M. Born E. Wolf (1999) Principles of optics Cambridge University Press Cambridge, UK

    Google Scholar 

  3. F. Bowman (1968) Introduction to Bessel functions Dover New York

    Google Scholar 

  4. T. Coleman M.A. Branch A. Grace (1999) MATLAB Optimization Toolbox user manual The Mathworks, Inc. ver. 2 Natick

    Google Scholar 

  5. T. Coleman M.A. Branch A. Grace (2000) MATLAB programming reference manual, Version 6 The Mathworks Inc. MA

    Google Scholar 

  6. J.W. Goodman (1996) Introduction to Fourier optics EditionNumber2 Mc Graw Hill USA

    Google Scholar 

  7. S.M. Kay (1993) Fundamentals of statistical signal processing Prentice Hall PTR New Jersey

    Google Scholar 

  8. U. Kubitscheck O. Kückmann T. Kues R. Peters (2000) ArticleTitleImaging and tracking single GFP molecules in solution Biophysical Journal 78 2170–2179

    Google Scholar 

  9. X. Michalet A.N. Kapanidis T. Laurence F. Pinaud S. Doose M. Pflughoefft S. Weiss (2003) ArticleTitleThe power and prospects of fluorescence microscopies and spectroscopies Annual Review of Biophysics and Biomolecular Structure 32 161–182 Occurrence Handle10.1146/annurev.biophys.32.110601.142525

    Article  Google Scholar 

  10. W.E. Moerner D.P. Fromm (2003) ArticleTitleMethods of single-molecule fluorescence spectroscopy and microscopy Review of Scientific Instruments 74 IssueID8 3597–3619 Occurrence Handle10.1063/1.1589587

    Article  Google Scholar 

  11. R.J. Ober S. Ram E.S. Ward (2004) ArticleTitleLocalization accuracy in single molecule microscopy Biophysical Journal 86 1185–1200

    Google Scholar 

  12. R.J. Ober C. Martinez X. Lai J. Zhou E. S. Ward (2004) ArticleTitleExocytosis of IgG as mediated by the receptor, FcRn: An analysis at the single molecule level Proceeding of the National Academy of Sciences 101 IssueID30 11076–11081

    Google Scholar 

  13. A. Papoulis S.U. Pillai (2002) Probability, random variables and stochastic processes EditionNumber4 McGraw Hill New York

    Google Scholar 

  14. Ram, S. (in preparation). Ph.D. Dissertation, University of Texas at Arlington/University of Texas Southwestern Medical Center at Dallas

  15. S. Ram E.S. Ward R.J. Ober (2005) ArticleTitleHow accurately can a single molecule be localized in three dimensions using a fluorescence microscope? Proceeding of SPIE 5699 426–435

    Google Scholar 

  16. W. Rudin (1987) Real and complex analysis Mc Graw Hill New York

    Google Scholar 

  17. B. Saleh (1978) Photoelectron statistics Springer Verlag Berlin, Germany

    Google Scholar 

  18. A. Santos I.T. Young (2000) ArticleTitleModel-based resolution: Applying the theory in quantitative microscopy Applied Optics 39 2948–2958

    Google Scholar 

  19. M.J. Saxton K. Jacobson (1997) ArticleTitleSingle particle tracking: Applications to membrane dynamics Annual Review of Biophysics and Biomolecular Structure 26 373–399 Occurrence Handle10.1146/annurev.biophys.26.1.373

    Article  Google Scholar 

  20. D.L. Snyder M.I. Miller (1999) Random point processes in time and space EditionNumber2 Springer Verlag New York

    Google Scholar 

  21. D.L. Snyder C.W. Helstrom A.D. Lanterman R.L. White (1995) ArticleTitleCompensation for read out noise in charge coupled device images Journal of the Optical Society of America A- Optics Image Science and Vision 12 IssueID2 272–283

    Google Scholar 

  22. R.E. Thompson D.R. Larson W.W. Webb (2002) ArticleTitlePrecise nanometer localization analysis for individual fluorescent probes Biophysical Journal 82 2775–2783

    Google Scholar 

  23. G.N. Watson (1958) A treatise on the theory of Bessel functions Cambridge University Press Cambridge, UK

    Google Scholar 

  24. S. Weiss (1999) ArticleTitleFluorescence spectroscopy of single biomolecules Science 283 1676–1683 Occurrence Handle10.1126/science.283.5408.1676

    Article  Google Scholar 

  25. K. A. Winick (1986) ArticleTitleCramer-Rao lower bounds on the performance of charge coupled device optical position estimators Jornal of the Optical Society America A-Optics Image Science and Vision 3 IssueID11 1809–1815

    Google Scholar 

  26. S. Zacks (1971) The theory of statistical inference John Wiley and Sons New York

    Google Scholar 

  27. F. Zhang (1999) Matrix theory Springer Verlag New York

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raimund J. Ober.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Ram, S., Sally Ward, E. & Ober, R.J. A Stochastic Analysis of Performance Limits for Optical Microscopes. Multidim Syst Sign Process 17, 27–57 (2006). https://doi.org/10.1007/s11045-005-6237-2

Download citation

Keywords

  • Spatio-temporal stochastic processes
  • Fisher information matrix
  • Cramer-Rao lower bound
  • Parameter estimation
  • Fluorescence microscopy
  • Optical imaging
  • Single Molecule Microscopy
  • Localization accuracy