Skip to main content
Log in

Optimization of design parameters and improvement of human comfort conditions in an upper-limb exosuit for assistance

  • Research
  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Exoskeleton robots have a wide range of applications in industrial field as well as for patients with locomotor disability. Among them, the flexible exoskeleton, known as “exosuit”, has attracted great interest from researchers. They are usually made up of flexible components such as cables and pieces of fabric. Since there are no rigid frames and links in the exosuits, they are much lighter and have less misalignment problems than the rigid exoskeletons. However, excessive pressure exerted by cables on soft tissues and skeleton of the human will lead to discomfort or even injuries. In this paper, a cable transmission system is incorporated into the exosuit system for gravitational compensation. The human body is assumed to be upright in the cable-driving wearable robot modeling. Then, a multi-criteria optimization approach, based on swarm intelligence, has been developed and adopted for reducing the uncomfortable forces applied on the user. Furthermore, the energy consumption is also taken into account in the design phase. Numerical simulation results demonstrate that the proposed exosuit design results in a reduction of more than 50% and 34% in the forces exerted on human body with loads of 0.5 kg and 5 kg, respectively. The energy loss was also reduced by up to 63% and 21% in these two cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. De Looze, M.P., Bosch, T., Krause, F., Stadler, K.S., O’sullivan, L.W.: Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics 59(5), 671–681 (2016)

    Article  Google Scholar 

  2. Gull, M.A., Bai, S., Bak, T.: A review on design of upper limb exoskeletons. Robotics 9(1), 16 (2020). number: 1 publisher: Multidisciplinary Digital Publishing Institute

    Article  Google Scholar 

  3. Mendis, S.: Stroke disability and rehabilitation of stroke: world health organization perspective. Int. J. Stroke 8(1), 3–4 (2013)

    Article  Google Scholar 

  4. Janssen, M.M., Bergsma, A., Geurts, A.C., De Groot, I.J.: Patterns of decline in upper limb function of boys and men with dmd: an international survey. J. Neurol. 261(7), 1269–1288 (2014)

    Article  Google Scholar 

  5. Kiguchi, K., Hayashi, Y.: An emg-based control for an upper-limb power-assist exoskeleton robot. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 42(4), 1064–1071 (2012)

    Article  Google Scholar 

  6. Franco, G., Fusetti, L.: Bernardino Ramazzini’s early observations of the link between musculoskeletal disorders and ergonomic factors. Appl. Ergon. 35(1), 67–70 (2004)

    Article  Google Scholar 

  7. Antwi-Afari, M., Li, H., Edwards, D., Pärn, E., Seo, J., Wong, A.: Biomechanical analysis of risk factors for work-related musculoskeletal disorders during repetitive lifting task in construction workers. Autom. Constr. 83, 41–47 (2017)

    Article  Google Scholar 

  8. Hoque, A., Ahmed, S.T., Paul, S., Parvez, M.: Topsis based ergonomic analysis on work related musculoskeletal disorders of sewing machine operators. Int. J. Adv. Eng. Technol. 8(5), 728 (2015)

    Google Scholar 

  9. Alkosha, H.M., Mo’men, I., Amen, M.M.: Risk assessment and prevalence of work-related musculoskeletal disorders among cranial and spinal neurosurgeons. World Neurosurgery 176, 151–161 (2023)

    Article  Google Scholar 

  10. Aghazadeh, F., Mital, A.: Injuries due to handtools: results of a questionnaire. Appl. Ergon. 18(4), 273–278 (1987)

    Article  Google Scholar 

  11. Muramatsu, Y., Kobayashi, H., Sato, Y., Jiaou, H., Hashimoto, T., Kobayashi, H.: Quantitative performance analysis of exoskeleton augmenting devices-muscle suit-for manual worker. Int. J. Autom. Technol. 5(4), 559–567 (2011)

    Article  Google Scholar 

  12. Perry, J.C., Rosen, J., Burns, S.: Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 12(4), 408–417 (2007)

    Article  Google Scholar 

  13. Nef, T., Riener, R.: Armin-design of a novel arm rehabilitation robot. In: 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, pp. 57–60. IEEE (2005)

    Chapter  Google Scholar 

  14. Gupta, A., O’Malley, M.K.: Design of a haptic arm exoskeleton for training and rehabilitation. IEEE/ASME Trans. Mechatron. 11(3), 280–289 (2006)

    Article  Google Scholar 

  15. Blanco, A., Catalán, J.M., Díez, J.A., García, J.V., Lobato, E., García-Aracil, N.: Electromyography assessment of the assistance provided by an upper-limb exoskeleton in maintenance tasks. Sensors, 19(15), 3391 (2019)

    Article  Google Scholar 

  16. EXHAUSS Exosquelettes. https://www.exhauss.com/ Accessed 2022-12-16

  17. Gull, M.A., Bak, T., Bai, S.: Dynamic modeling of an upper limb hybrid exoskeleton for simulations of load-lifting assistance. J. Mech. Eng. Sci. 236(5), 2147–2160 (2022)

    Article  Google Scholar 

  18. Ebrahimi, A.: Stuttgart exo-jacket: an exoskeleton for industrial upper body applications. In: 2017 10th International Conference on Human System Interactions (HSI), pp. 258–263. IEEE (2017)

    Chapter  Google Scholar 

  19. Verdel, D., Bastide, S., Vignais, N., Bruneau, O., Berret, B.: An identification-based method improving the transparency of a robotic upper limb exoskeleton. Robotica 39(9), 1711–1728 (2021)

    Article  Google Scholar 

  20. Rocon, E., Ruiz, A., Raya, R., Schiele, A., Pons, J.L., Belda-Lois, J., Poveda, R., Vivas, M., Moreno, J.: Human-robot physical interaction. In: Wearable Robots: Biomechatronic Exoskeletons, pp. 127–163 (2008). Chap. 5

    Chapter  Google Scholar 

  21. Schiele, A., Van Der Helm, F.C.: Kinematic design to improve ergonomics in human machine interaction. IEEE Trans. Neural Syst. Rehabil. Eng. 14(4), 456–469 (2006)

    Article  Google Scholar 

  22. Agrawal, S.K., Dubey, V.N., Gangloff, J.J., Brackbill, E., Mao, Y., Sangwan, V.: Design and optimization of a cable driven upper arm exoskeleton. J. Med. Devices 3(3), 031004 (2009)

    Article  Google Scholar 

  23. Zhang, Y., Arakelian, V.: Design of a passive robotic exosuit for carrying heavy loads. In: 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), pp. 860–865. IEEE (2018)

    Chapter  Google Scholar 

  24. Langard, M., Aoustin, Y., Arakelian, V., Chablat, D.: Investigation of the stresses exerted by an exosuit of a human arm. In: Advanced Technologies in Robotics and Intelligent Systems: Proceedings of ITR 2019, pp. 425–435. Springer, Berlin (2020)

    Chapter  Google Scholar 

  25. Landis, E.M.: Micro-injection studies of capillary blood pressure in human skin. Heart 15, 209–228 (1930)

    Google Scholar 

  26. Wegmann, K., Burkhart, K., Koslowsky, T., Koebke, J., Neiss, W., Müller, L.: Arterial supply of the distal humerus. Surg. Radiol. Anat. 36, 705–711 (2014)

    Article  Google Scholar 

  27. Goonetilleke, R.S., Eng, T.J.: Contact area effects on discomfort. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 38, pp. 688–690. Sage, Los Angeles (1994)

    Google Scholar 

  28. Jarrassé, N., Morel, G.: Connecting a human limb to an exoskeleton. IEEE Trans. Robot. 28(3), 697–709 (2011)

    Article  Google Scholar 

  29. Khalil, W., Dombre, E.: Modeling Identification and Control of Robots (2002)

    Google Scholar 

  30. Mao, Y., Agrawal, S.K.: A cable driven upper arm exoskeleton for upper extremity rehabilitation. In: 2011 IEEE International Conference on Robotics and Automation, pp. 4163–4168. IEEE (2011)

    Chapter  Google Scholar 

  31. Kraus, W.: Force Control of Cable-Driven Parallel Robots (2016)

    Google Scholar 

  32. Jiao, Y., Jermsittiparsert, K., Krasnopevtsev, A.Y., Yousif, Q.A., Salmani, M.: Interaction of thermal cycling and electric current on reliability of solder joints in different solder balls. Mater. Res. Express 6(10), 106302 (2019)

    Article  Google Scholar 

  33. Mao, Y., Agrawal, S.K.: Design of a cable-driven arm exoskeleton (carex) for neural rehabilitation. IEEE Trans. Robot. 28(4), 922–931 (2012)

    Article  Google Scholar 

  34. Mao, Y., Jin, X., Dutta, G.G., Scholz, J.P., Agrawal, S.K.: Human movement training with a cable driven arm exoskeleton (carex). IEEE Trans. Neural Syst. Rehabil. Eng. 23(1), 84–92 (2014)

    Article  Google Scholar 

  35. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  36. Preface. In: Kennedy, J., Eberhart, R.C., Shi, Y. (eds.) Swarm Intelligence. The Morgan Kaufmann Series in Artificial Intelligence, pp. 13–27. Morgan Kaufmann, San Francisco (2001)

  37. Di Cesare, N., Chamoret, D., Domaszewski, M.: A new hybrid pso algorithm based on a stochastic Markov chain model. Adv. Eng. Softw. 90, 127–137 (2015)

    Article  Google Scholar 

  38. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  39. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), vol. 2, pp. 1671–1676. IEEE (2002)

    Chapter  Google Scholar 

  40. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, pp. 25–34 (1987)

    Chapter  Google Scholar 

  41. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1–7), 107–117 (1998)

    Article  Google Scholar 

  42. Langville, A.N., Meyer, C.D.: Deeper inside pagerank. Internet Math. 1(3), 335–380 (2004)

    Article  MathSciNet  Google Scholar 

  43. Newton, P.K., Mason, J., Bethel, K., Bazhenova, L.A., Nieva, J., Kuhn, P.: A stochastic Markov chain model to describe lung cancer growth and metastasis. PLoS ONE 7(4), 34637 (2012)

    Article  Google Scholar 

  44. Fonseca, C.M., Fleming, P.J.: An overview of evolutionary algorithms in multiobjective optimization. Evol. Comput. 3(1), 1–16 (1995)

    Article  Google Scholar 

  45. Drillis, R., Contini, R.: Body segment parameters. Technical report, New York University (1966)

  46. Polyethylene braid-style cables. https://www.amazon.com/JIOUDAO-Fishing-Multicolor-Strength-15LB-200LB/dp/B0BYHHWCLS?th=1&psc=1 Accessed 2023-11-17

  47. BOSCH Drills. https://www.bosch-professional.com/sa/en/drills-213949-ocs-c/ Accessed 2023-11-10

  48. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)

    Article  MathSciNet  Google Scholar 

  49. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  50. Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., Chica-Rivas, M.: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 71, 804–818 (2015)

    Article  Google Scholar 

  51. Antoniadis, A., Lambert-Lacroix, S., Poggi, J.-M.: Random forests for global sensitivity analysis: a selective review. Reliab. Eng. Syst. Saf. 206, 107312 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the China Scholarship Council [Grant Number: 202008070129].

Author information

Authors and Affiliations

Authors

Contributions

Yaodong Lu and Yannick Aoustin conceived and designed the study. Yaodong Lu, Yannick Aoustin, and Vigen Arakelian wrote the article. All authors reviewed the manuscript. Yannick Aoustin and Vigen Arakelian contributed equally to this work.

Corresponding author

Correspondence to Yaodong Lu.

Ethics declarations

Competing interests

The second author Yannick Aoustin is an Editorial Board Member. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Aoustin, Y. & Arakelian, V. Optimization of design parameters and improvement of human comfort conditions in an upper-limb exosuit for assistance. Multibody Syst Dyn (2024). https://doi.org/10.1007/s11044-024-09977-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11044-024-09977-1

Keywords

Navigation