Skip to main content

Advertisement

Log in

Evolutionary sparse data-driven discovery of multibody system dynamics

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The value of unknown parameters of multibody systems is crucial for prediction, monitoring, and control, sometimes estimated using a biased physics-based model leading to incorrect outcomes. Discovering motion equations of multibody systems from time-series data is challenging as they consist of complex rational functions, constants as function arguments, and diverse function terms, which are not trivial to guess. This study aims at developing an evolutionary symbolic sparse regression approach for the system identification of multibody systems. The procedure discovers equations of motion and system parameters appearing as either constant values in function arguments or coefficients of function expressions. A genetic programming algorithm is written to generate symbolic function expressions, in which a hard-thresholding regression method is embedded. In an evolutionary manner, the complex functional forms, constant arguments, and unknown coefficients are identified to eventually discover the governing equation of a given system. A fitness measure is presented to promote parsimony in distilled equations and reduction in fit-to-data error. Hybrid discrete-continuous dynamical systems are also investigated, for which an approach is suggested to determine both mode number and system submodels. The performance and efficiency of the suggested evolutionary symbolic sparse regression methodology are evaluated in a simulation environment. The capability of the developed approach is also demonstrated by studying several multibody systems. The procedure is efficient and gives the possibility to estimate system parameters and distill the respective governing equations. This technique reduces the risk that the function dictionary does not cover all functionality required to unravel hidden physical laws and the need for prior knowledge of the mechanism of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  1. Schoukens, J., Ljung, L.: Nonlinear system identification: a user-oriented road map. IEEE Control Syst. Mag. 39(6), 28–99 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Schön, T.B., Wills, A., Ninness, B.: System identification of nonlinear state-space models. Automatica 47(1), 39–49 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zadeh, L.A.: From circuit theory to system theory. Proc. IRE 50(5), 856–865 (1962)

    Article  MathSciNet  Google Scholar 

  4. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall PTR, Upper Saddle River, New Jersey (1999)

    MATH  Google Scholar 

  5. Nikravesh, P.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Cliffs, New Jersey (1988)

    Google Scholar 

  6. Rahnejat, H.: Multibody dynamics: historical evolution and application. J. Mech. Eng. Sci. 214, 149–173 (2000)

    Article  Google Scholar 

  7. Kim, S.: Moment of inertia and friction torque coefficient identification in a servo drive system. IEEE Trans. Ind. Electron. 66(1), 60–70 (2019)

    Article  Google Scholar 

  8. Uchida, T., Vyasarayani, C.P., Smart, M., McPhee, J.: Parameter identification for multibody systems expressed in differential-algebraic form. Multibody Syst. Dyn. 31, 393–403 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yu, M., Wang, D., Luo, M.: Model-based prognosis for hybrid systems with mode-dependent degradation behaviors. IEEE Trans. Ind. Electron. 61(1), 546–554 (2014)

    Article  Google Scholar 

  10. De Groote, W., Kikken, E., Hostens, E., Hoecke, S.V., Guillaume Crevecoeur, G.: Neural network augmented physics models for systems with partially unknown dynamics: application to slider-crank mechanism. IEEE/ASME Trans. Mechatron. 27(1), 103–114 (2022)

    Article  Google Scholar 

  11. Crutchfield, J.P., McNamara, B.S.: Equations of motion from a data series. Complex Syst. 1(3), 417–452 (1987)

    MathSciNet  MATH  Google Scholar 

  12. Daniels, B.C., Nemenman, I.: Automated adaptive inference of phenomenological dynamical models. Nat. Commun. 6, 8133 (2015)

    Article  Google Scholar 

  13. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  Google Scholar 

  14. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932–3937 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Roberts, A.J.: Model Emergent Dynamics in Complex Systems. SIAM, Philadelphia (2014)

    Google Scholar 

  16. Askari, E., Flores, P., Silva, F.: A particle swarm-based algorithm for optimization of multi-layered and graded dental ceramics. J. Mech. Behav. Biomed. Mater. 77, 461–469 (2018)

    Article  Google Scholar 

  17. Brunton, S.L., Noack, B.R., Koumoutsakos, P.: Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52(1), 1–31 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brunton, S.L., Kutz, J.N.: Methods for data-driven multiscale model discovery for materials. J. Phys., Mater. 2, 044002 (2019)

    Article  Google Scholar 

  19. Mangan, N.M., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Inferring biological networks by sparse identification of nonlinear dynamics. IEEE Trans. Molec. Biol. Multi-Scale Commun. 2(1), 52–63 (2016)

    Article  Google Scholar 

  20. Goharoodi, S.K., Dekemele, K., Loccufier, M., Dupre, L., Crevecoeur, G.: Evolutionary-based sparse regression for the experimental identification of duffing oscillator. Mathematical Problems in Engineering 2020, 7286575 (2020)

    Google Scholar 

  21. Quade, M., Abel, M.: Prediction of dynamical systems by symbolic regression. Phys. Rev. E 94, 012214 (2016)

    Article  MathSciNet  Google Scholar 

  22. Lasi, H., et al.: Industry 4.0. Bus. Inf. Syst. Eng. 4(6), 239–242 (2014)

    Article  Google Scholar 

  23. Lauer, F., Bloch, G.: Hybrid System Identification Theory and Algorithms for Learning Switching Models. Springer, Switzerland AG (2019)

    Book  MATH  Google Scholar 

  24. Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29(2), 28–93 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Askari, E., Andersen, M.: A closed-form formulation for the conformal articulation of metal-on-polyethylene hip prostheses: contact mechanics and sliding distance. Proc. Inst. Mech. Eng., H J. Eng. Med. 232(12), 1196–1208 (2018)

    Article  Google Scholar 

  26. Mangan, N.M., Askham, T., Brunton, S.L., Kutz, J.N., Proctor, J.L.: Model selection for hybrid dynamical systems via sparse regression. Proc. R. Soc. A 475, 20180534 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Askari, E., Andersen, M.: An anatomy-based dynamic model of total knee arthroplasty. Nonlinear Dyn. 106, 3539–3555 (2021)

    Article  Google Scholar 

  28. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  29. Flores, P., Ambrosio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82, 1359–1369 (2004)

    Article  Google Scholar 

  30. Uchida, T., Callejo, A., de Jalon, J.G., McPhee, J.: On the Gröbner basis triangularization of constraint equations in natural coordinates. Multibody Syst. Dyn. 31(3), 371–392 (2014)

    Article  MathSciNet  Google Scholar 

  31. Angeli, A., Desmet, W., Naets, F.: Deep learning for model order reduction of multibody systems to minimal coordinates. Comput. Methods Appl. Mech. Eng. 373, 113517 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cortiella, A., Park, K.C., Doostan, A.: Sparse identification of nonlinear dynamical systems via reweighted L1-regularized least squares. Comput. Methods Appl. Mech. Eng. 376, 113620 (2021)

    Article  MATH  Google Scholar 

  33. Savitkzy, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1964 (1964)

    Article  Google Scholar 

  34. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  35. Cullum, J.: Numerical differentiation and regularization. SIAM J. Numer. Anal. 8(2), 254–265 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  36. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3(3), 210–229 (1959)

    Article  MathSciNet  Google Scholar 

  37. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Massachusetts, MA, USA (1992)

    MATH  Google Scholar 

  38. Koza, J.R.: Hierarchical genetic algorithms operating on populations of computer programs. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence, vol. 1. Morgan Kaufmann, San Mateo (1989)

    Google Scholar 

  39. Goldberg, D.E.: Computer-aided gas pipeline operation using genetic algorithms and rule learning. Ph.D. Dissertation (1983)

  40. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Rawlins, G. (ed.) Foundations of Genetic Algorithms. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  41. Rudy, S.H., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Data-driven discovery of partial differential equations. Sci. Adv. 3, e1602614 (2017)

    Article  Google Scholar 

  42. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hastie, T., Tibshirani, R., Wainwright, M.: Statistical Learning with Sparsity. Taylor & Francis Group, New York (2015)

    Book  MATH  Google Scholar 

  44. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 67(Part2), 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Aihara, K., Suzuki, H.: Theory of hybrid dynamical systems and its applications to biological and medical systems. Philos. Trans. R. Soc. A 368, 4893–4914 (2010)

    Article  MATH  Google Scholar 

  46. Askari, E.: Mathematical models for characterizing non-Hertzian contacts. Appl. Math. Model. 90, 432–447 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  47. Askari, E., Andersen, M.S.: On the effect of friction on tibiofemoral joint kinematics. Appl. Sci. 11(16), 7516 (2021)

    Article  Google Scholar 

  48. Askari, E., Andersen, M.S.: Effect of ligament properties on nonlinear dynamics and wear prediction of knee prostheses. J. Biomech. Eng. 143, 021014 (2021)

    Article  Google Scholar 

  49. Raissi, M.: Deep hidden physics models: deep learning of nonlinear partial differential equations. J. Mach. Learn. Res. 19, 1–24 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author of this article would like to acknowledge Marie Sktodowska-Curie Actions – Seal of Excellence, of the Research Foundation Flanders (FWO) with Project No. 12ZZ521N.

Funding

This work was supported by Marie Sktodowska-Curie Actions - Seal of Excellence, of the Research Foundation Flanders (FWO) with Project No. 12ZZ521N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Askari.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest concerning the publication of this manuscript. The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, E., Crevecoeur, G. Evolutionary sparse data-driven discovery of multibody system dynamics. Multibody Syst Dyn 58, 197–226 (2023). https://doi.org/10.1007/s11044-023-09901-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-023-09901-z

Keywords

Navigation