Skip to main content
Log in

Kinematics, dynamics, and muscle-synergy analysis of single-leg Yoga postures

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper compares ten regular Yoga practitioners with ten nonpractitioners while performing two single-leg support Yoga postures: Vrksasana (tree posture) and Natarajasana (dancer posture). Thirty-three reflective markers’ trajectories, ground-reaction forces, and EMGs from eleven muscles were registered. Inverse kinematics and dynamics analyses were performed using an OpenSim multibody model. Muscle synergies were extracted from the EMG signals using nonnegative matrix factorization. The required number of synergies to reconstruct the original signal was estimated using a variability-threshold criterion. An additional analysis was performed using the synergy-coordination-index estimation from a minimum global set of eight synergies selected using a similarity index. The Yoga group adopted a more abducted hip at the support leg associated with a higher lumbar bending in the Vrksasana posture. They also used fewer muscle synergies than controls, which correlated positively with the center of pressure rambling trajectory variability, suggesting decreased control complexity. For the Natarajasana, Yoga practitioners showed higher average hip-flexion angle and hip-flexion torque but no differences in synergy parameters. When both groups were combined, the synergy coordination index for Natarajasana was smaller than for Vrksasana, indicating that Natarajasana requires a larger synergy space and is a more challenging task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Subramaniam, S., Bhatt, T.: Effect of Yoga practice on reducing cognitive-motor interference for improving dynamic balance control in healthy adults. Complement. Ther. Med. 30, 30–35 (2017)

    Article  Google Scholar 

  2. Ülger, Ö., Yağlı, N.V.: Effects of Yoga on balance and gait properties in women with musculoskeletal problems: a pilot study. Complement. Ther. Clin. Pract. 17(1), 13–15 (2011)

    Article  Google Scholar 

  3. Kelley, K.K., Aaron, D., Hynds, K., Machado, E., Wolff, M.: The effects of a therapeutic Yoga program on postural control, mobility, and gait speed in community-dwelling older adults. J. Altern. Complement. Med. 20(12), 949–954 (2014)

    Article  Google Scholar 

  4. Tiedemann, A., O’Rourke, S., Sesto, R., Sherrington, C.: A 12-week Iyengar Yoga program improved balance and mobility in older community-dwelling people: a pilot randomized controlled trial. J. Gerontol., Ser. A, Biol. Sci. Med. Sci. 68(9), 1068–1075 (2013)

    Google Scholar 

  5. Nick, N., Petramfar, P., Ghodsbin, F., Keshavarzi, S., Jahanbin, I.: The effect of Yoga on balance and fear of falling in older adults. PM&R 8(2), 145–151 (2016)

    Article  Google Scholar 

  6. Mears, S.C., Wilson, M.R., Mannen, E.M., Tackett, S.A., Barnes, C.L.: Position of the Hip in Yoga. J. Arthroplast. 33(7), 2306–2311 (2018)

    Article  Google Scholar 

  7. Mears, S.C., Tackett, S.A., Elkins, M.C., Severin, A.C., Barnes, S.G., Mannen, E.M., Martin, R.D.: Ankle motion in common Yoga poses. The Foot 39, 55–59 (2019)

    Article  Google Scholar 

  8. Salem, G.J., Yu, S.S.Y., Wang, M.Y., Samarawickrame, S., Hashish, R., Azen, S.P., Greendale, G.A.: Physical demand profiles of hatha Yoga postures performed by older adults. Evid.-Based Complement. Altern. Med. 2013, 165763 (2013)

    Article  Google Scholar 

  9. Streeter, C.C., Jensen, J.E., Perlmutter, R.M., Cabral, H.J., Tian, H., Terhune, D.B., et al.: Yoga Asana sessions increase brain GABA levels: a pilot study. J. Altern. Complement. Med. 13(4), 419–426 (2007)

    Article  Google Scholar 

  10. Streeter, C.C., Gerbarg, P.L., Saper, R.B., Ciraulo, D.A., Brown, R.P.: Effects of Yoga on the autonomic nervous system, gamma-aminobutyric-acid, and allostasis in epilepsy, depression, and post-traumatic stress disorder. Med. Hypotheses 78(5), 571–579 (2012)

    Article  Google Scholar 

  11. Brown, R.P., Gerbarg, P.L.: Sudarshan Kriya yogic breathing in the treatment of stress, anxiety, and depression: part I—neurophysiologic model. J. Altern. Complement. Med. 11(1), 189–201 (2005)

    Article  Google Scholar 

  12. Takakusaki, K., Takahashi, M., Obara, K., Chiba, R.: Neural substrates involved in the control of posture. Adv. Robot. 31(1–2), 2–23 (2017)

    Article  Google Scholar 

  13. Balaban, C.D., Porter, J.D.: Neuroanatomic substrates for vestibulo-autonomic interactions. J. Vestib. Res. 8(1), 7–16 (1998)

    Article  Google Scholar 

  14. Pinto, D.P., Moreira, P.S., Menegaldo, L.L.: Postural control adaptations in Yoga single-leg support postures: comparison between practitioners and non-practitioners. Mot. Control 26(3), 412–429 (2022)

    Article  Google Scholar 

  15. Halilaj, E., Rajagopal, A., Fiterau, M., Hicks, J.L., Hastie, T.J., Delp, S.L.: Machine learning in human movement biomechanics: best practices, common pitfalls, and new opportunities. J. Biomech. 81, 1–11 (2018)

    Article  Google Scholar 

  16. Ferber, R., Osis, S.T., Hicks, J.L., Delp, S.L.: Gait biomechanics in the era of data science. J. Biomech. 49(16), 3759–3761 (2016)

    Article  Google Scholar 

  17. Phinyomark, A., Campbell, E., Scheme, E.: Surface electromyography (EMG) signal processing, classification, and practical considerations. In: Biomedical Signal Processing, pp. 3–29. Springer, Singapore (2020)

    Chapter  Google Scholar 

  18. Ting, L.H.: Dimensional reduction in sensorimotor systems: a framework for understanding muscle coordination of posture. Prog. Brain Res. 165, 299–321 (2007)

    Article  Google Scholar 

  19. Ting, L.H., Chvatal, S.A.: Decomposing muscle activity in motor tasks. In: Motor Control: Theories, Experiments, and Applications, pp. 102–138 (2010)

    Chapter  Google Scholar 

  20. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  MATH  Google Scholar 

  21. Barroso, F.O., Torricelli, D., Molina-Rueda, F., Alguacil-Diego, I.M., Cano-de-la-Cuerda, R., Santos, C., et al.: Combining muscle synergies and biomechanical analysis to assess gait in stroke patients. J. Biomech. 63, 98–103 (2017)

    Article  Google Scholar 

  22. Cheung, V.C., Piron, L., Agostini, M., Silvoni, S., Turolla, A., Bizzi, E.: Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc. Natl. Acad. Sci. 106(46), 19563–19568 (2009)

    Article  Google Scholar 

  23. Banks, C.L., Pai, M.M., McGuirk, T.E., Fregly, B.J., Patten, C.: Methodological choices in muscle synergy analysis impact differentiation of physiological characteristics following stroke. Front. Comput. Neurosci. 11, 78 (2017)

    Article  Google Scholar 

  24. Torres-Oviedo, G., Ting, L.H.: Muscle synergies characterizing human postural responses. J. Neurophysiol. 98(4), 2144–2156 (2007)

    Article  Google Scholar 

  25. Ivanenko, Y.P., Cappellini, G., Dominici, N., Poppele, R.E., Lacquaniti, F.: Coordination of locomotion with voluntary movements in humans. J. Neurosci. 25(31), 7238–7253 (2005)

    Article  Google Scholar 

  26. d’Avella, A., Portone, A., Fernandez, L., Lacquaniti, F.: Control of fast-reaching movements by muscle synergy combinations. J. Neurosci. 26(30), 7791–7810 (2006)

    Article  Google Scholar 

  27. Gizzi, L., Nielsen, J.F., Felici, F., Ivanenko, Y.P., Farina, D.: Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. J. Neurophysiol. 106(1), 202–210 (2011)

    Article  Google Scholar 

  28. Alnajjar, F., Wojtara, T., Shimoda, S.: Muscle synergy space: learning model to create an optimal muscle synergy. Front. Comput. Neurosci. 7, 136 (2013)

    Article  Google Scholar 

  29. Wang, M.Y., Yu, S.S., Hashish, R., Samarawickrame, S.D., Kazadi, L., Greendale, G.A., Salem, G.: The biomechanical demands of standing Yoga poses in seniors: the Yoga empowers seniors study (YESS). BMC Complement. Altern. Med. 13(1), 1–11 (2013)

    Article  Google Scholar 

  30. Wang, M.Y., Greendale, G.A., Yu, S.S.Y., Salem, G.J.: Physical-performance outcomes and biomechanical correlates from the 32-week Yoga empowers seniors study. Evid.-Based Complement. Altern. Med. 2016, 6921689 (2016)

    Article  Google Scholar 

  31. Yu, S.S.Y., Wang, M.Y., Samarawickrame, S., Hashish, R., Kazadi, L., Greendale, G.A., Salem, G.J.: The physical demands of the tree (vriksasana) and one-leg balance (utthita hasta padangusthasana) poses performed by seniors: a biomechanical examination. Evid.-Based Complement. Altern. Med. 2012, 971896 (2012)

    Article  Google Scholar 

  32. Delp, S.L., et al.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)

    Article  Google Scholar 

  33. Rajagopal, A., Dembia, C.L., DeMers, M.S., Delp, D.D., Hicks, J.L., Delp, S.L.: Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans. Biomed. Eng. 63(10), 2068–2079 (2016)

    Article  Google Scholar 

  34. Lai, A.K.M., Arnold, A.S., Wakeling, J.M.: Why are antagonist muscles co-activated in my simulation? A musculoskeletal model for analysing human locomotor task. Ann. Biomed. Eng. 45(12), 2762–2774 (2017)

    Article  Google Scholar 

  35. Lu, T.W., O’Connor, J.J.: Bone position estimation from skin marker coordinates using global optimisation with joint constraints. J. Biomech. 32(2), 129–134 (1999)

    Article  Google Scholar 

  36. Escamilla, R.F., Babb, E., DeWitt, R., Jew, P., Kelleher, P., Burnham, T., et al.: Electromyographic analysis of traditional and nontraditional abdominal exercises: implications for rehabilitation and training. Phys. Ther. 86(5), 656–671 (2006)

    Article  Google Scholar 

  37. Chvatal, S.A., Ting, L.H.: Common muscle synergies for balance and walking. Front. Comput. Neurosci. 7, 48 (2013)

    Article  Google Scholar 

  38. Torres-Oviedo, G., Ting, L.H.: Subject-specific muscle synergies in human balance control are consistent across different biomechanical contexts. J. Neurophysiol. 103(6), 3084–3098 (2010)

    Article  Google Scholar 

  39. Seung, D., Lee, L.: Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 13, 556–562 (2001)

    Google Scholar 

  40. Torres-Oviedo, G., Macpherson, J.M., Ting, L.H.: Muscle synergy organization is robust across a variety of postural perturbations. J. Neurophysiol. 96(3), 1530–1546 (2006)

    Article  Google Scholar 

  41. Routson, R.L., Kautz, S.A., Neptune, R.R.: Modular organization across changing task demands in healthy and poststroke gait. Physiol. Rep. 2(6), e12055 (2014)

    Article  Google Scholar 

  42. Steele, K.M., Rozumalski, A., Schwartz, M.H.: Muscle synergies and complexity of neuromuscular control during gait in cerebral palsy. Dev. Med. Child Neurol. 57(12), 1176–1182 (2015)

    Article  Google Scholar 

  43. Lakens, D.: Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. 4, 863 (2013)

    Article  Google Scholar 

  44. Riley, M.A., Wong, S., Mitra, S., Turvey, M.T.: Common effects of touch and vision on postural parameters. Exp. Brain Res. 117(1), 165–170 (1997)

    Article  Google Scholar 

  45. Gatantino, M.L., Bzdewka, T.M., Eissler-Rnsso, J.L., Holbrook, M.L., Mogck, E.P., Geigle, P., Farrar, J.T.: The impact of modified Hatha Yoga on chronic low back pain: a pilot study. Altern. Ther. Health Med. 10(2), 56–59 (2004)

    Google Scholar 

  46. Williams, K.A., Petronis, J., Smith, D., Goodrich, D., Wu, J., Ravi, N., et al.: Effect of Iyengar Yoga therapy for chronic low back pain. Pain 115(1–2), 107–117 (2005)

    Article  Google Scholar 

  47. Santuz, A., Ekizos, A., Kunimasa, Y., Kijima, K., Ishikawa, M., Arampatzis, A.: Lower complexity of motor primitives ensures robust control of high-speed human locomotion. Heliyon 6(10), e05377 (2020)

    Article  Google Scholar 

  48. Konrad, P., Schmitz, K., Denner, A.: Neuromuscular evaluation of trunk-training exercises. J. Athl. Train. 36(2), 109 (2001)

    Google Scholar 

  49. Ting, L.H., McKay, J.L.: Neuromechanics of muscle synergies for posture and movement. Curr. Opin. Neurobiol. 17(6), 622–628 (2007)

    Article  Google Scholar 

  50. Bizzi, E., Cheung, V.C.: The neural origin of muscle synergies. Front. Comput. Neurosci. 7, 51 (2013)

    Article  Google Scholar 

  51. Sullivan, G.M., Feinn, R.: Using effect size—or why the P value is not enough. J. Grad. Med. Educ. 4(3), 279–282 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, by CNPq, FAPERJ, and FINEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Luporini Menegaldo.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(DOCX 1.1 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menegaldo, L.L., Pinto, D.P., Clemente de Oliveira, H.L. et al. Kinematics, dynamics, and muscle-synergy analysis of single-leg Yoga postures. Multibody Syst Dyn 58, 137–155 (2023). https://doi.org/10.1007/s11044-023-09887-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-023-09887-8

Keywords

Navigation