Skip to main content
Log in

Port inversions of parametric Two-Input Two-Output Port models of flexible substructures

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In the context of multi-body modeling techniques, this paper details the port inversion operations, which can be performed on the Two-Input-Two-Output Port (TITOP) model of a flexible substructure to take into account various boundary conditions and to assemble it with the other substructures of the whole system. From the model obtained considering the body is clamped at a parent point and free at some others child points, it is shown that the dynamics obtained under the free-free, free-clamped, clamped-clamped boundary conditions can be characterized analytically. The clamped-clamped condition and its link with the Craig-Bampton formulation are more particularly investigated, since it is required to model closed-kinematic chains of flexible bodies, like in truss structures, using a sub-structuring approach. Furthermore, the channel inversion operations are extended to the case of parameter varying models. The model of a triangular mechanism, fully parameterized according to the cross section parameters of each mechanism beams, is developed and validated. This model is used to illustrate the capabilities of this parametric approach to import the model in multi-domain simulation software and the possibility to optimize directly the mechanism design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Akcay Perdahcioglu, D., Glu, P., de Boer, A., Hoogt, P.: Design optimization applied in structural dynamics. In: 1st International conference on Artificial intelligence for industrial applications (2007)

    Google Scholar 

  2. Hurty, W.C.: Dynamic analysis of structural systems using component modes. AIAA J. 3(4), 678–685 (1965)

    Article  Google Scholar 

  3. MacNeal, R.H.: A hybrid method of component mode synthesis. Comput. Struct. 1(4), 581–601 (1971)

    Article  Google Scholar 

  4. Hintz, R.M.: Analytical methods in component modal synthesis. AIAA J. 13(8), 1007–1016 (1975)

    Article  MATH  Google Scholar 

  5. Craig, R.R. Jr., Bampton, M.C.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968)

    Article  MATH  Google Scholar 

  6. Craig, R.R. Jr., Chang, C.-J.: Substructure coupling for dynamic analysis and testing (1977), NASA Tech. Rep. NO. NASA-CR-2781

  7. Akcay Perdahcioglu, D., Glu, P., Ellenbroek, M., Hoogt, P., de Boer, A.: Design optimization utilizing dynamic substructuring and artificial intelligence techniques. In: 26 th International Modal Analysis Conference IMAC-XXV: A conference & Exposition on structural dynamics (2008)

    Google Scholar 

  8. Simscape™ Multibody™ User’s Guide. MATLAB - R2022a (2022). https://fr.mathworks.com/help/pdf_doc/physmod/sm/sm_ug.pdf

  9. MapleSim User’s Guide (2014). https://www.maplesoft.com/documentation_center/maplesim6/maplesimuserguide.pdf

  10. Blaauw, J.B., Schilder, J.P.: Structural analysis of a swinging fairground attraction using a novel implementation of reduced order modeling in multibody dynamics. Eng. Struct. 253, 113742 (2022). https://doi.org/10.1016/j.engstruct.2021.113742

    Article  Google Scholar 

  11. Maghami, P., Gupta, S., Elliot, K., Joshi, S.: Integrated controls-structures design methodology: redesign of an evolutionary test structure. J. Guid. Control Dyn. 19 (2000). https://doi.org/10.2514/3.21621

  12. Balas, G.J.: Robust control of flexible structures: Theory and experiments. PhD thesis, California Institute of Technology (1990). https://resolver.caltech.edu/CaltechETD:etd-10252002-160528

  13. da Fonseca, I., Bainum, P., Lourencao, P.: Structural and control optimization of a space structure subjected to the gravity-gradient torque. Acta Astronaut. 51, 673–681 (2002). https://doi.org/10.1016/S0094-5765(02)00024-3

    Article  Google Scholar 

  14. Grandhi, R.V.: Structural and control optimization of space structures. Comput. Struct. 31(2), 139–150 (1989). https://doi.org/10.1016/0045-7949(89)90222-8

    Article  Google Scholar 

  15. Maghami, P.G., Lim, K.B.: Synthesis and control of flexible systems with component-level uncertainties. J. Dyn. Syst. Meas. Control 131(5), 051005 (2009). https://doi.org/10.1115/1.3155010. https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/131/5/051005/5659161/051005_1.pdf

    Article  Google Scholar 

  16. Alazard, D., Sanfedino, F.: Satellite Dynamics Toolbox library SDTlib - User’s Guide (2021). https://personnel.isae-supaero.fr/daniel-alazard/matlab-packages/satellite-dynamics-toolbox.html. Accessed 2022-12-18

  17. Balas, G., Chiang, R., Packard, A., Safonov, M.: Robust control toolbox user’s guide. The Math Works, Inc., Tech. Rep. (2007)

  18. Sanfedino, F., Alazard, D., Preda, V., Oddenino, D.: Integrated modeling of microvibrations induced by solar array drive mechanism for worst-case end-to-end analysis and robust disturbance estimation. Mech. Syst. Signal Process. 163, 108168 (2022). https://doi.org/10.1016/j.ymssp.2021.108168

    Article  Google Scholar 

  19. Sanfedino, F., Thiébaud, G., Alazard, D., Guercio, N., Deslaef, N.: Advances in fine line-of-sight control for large space flexible structures. Aerosp. Sci. Technol. 130 (2022), 107961. https://doi.org/10.48550/arXiv.2209.13374

    Article  Google Scholar 

  20. Kassarian, E., Sanfedino, F., Alazard, D., Montel, J., Chevrier, C.A.: Robust integrated control/structure co-design for stratospheric balloons. IFAC-PapersOnLine 55(25), 13–18 (2022). https://doi.org/10.1016/j.ifacol.2022.09.316. 10th IFAC Symposium on Robust Control Design ROCOND 2022

    Article  Google Scholar 

  21. Rodrigues, R., Preda, V., Sanfedino, F., Alazard, D.: Modeling, robust control synthesis and worst-case analysis for an on-orbit servicing mission with large flexible spacecraft. Aerosp. Sci. Technol. 129, 107865 (2022). https://doi.org/10.1016/j.ast.2022.107865

    Article  Google Scholar 

  22. Alazard, D., Perez, J.A., Cumer, C., Loquen, T.: Two-input two-output port model for mechanical systems (2015). https://doi.org/10.2514/6.2015-1778. https://arc.aiaa.org/doi/abs/10.2514/6.2015-1778

  23. Chebbi, J., Dubanchet, V., Perez Gonzalez, J.A.: Linear dynamics of flexible multibody systems: a system-based approach. Multibody Syst. Dyn. 41 (2016). https://doi.org/10.1007/s11044-016-9559-y

  24. Sanfedino, F., Alazard, D., Pommier-Budinger, V., Falcoz, A., Boquet, F.: Finite element based n-port model for preliminary design of multibody systems. J. Sound Vib. 415, 128–146 (2018). https://doi.org/10.1016/j.jsv.2017.11.021

    Article  Google Scholar 

  25. MATLAB documentation, Reduced Order Flexible Solid - Flexible body based on a reduced-order model, 2021. MATLAB, version 9.10.0 (R2021a) (2021). https://www.mathworks.com/help/physmod/sm/ref/reducedorderflexiblesolid.html

  26. Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968). https://doi.org/10.2514/3.4741

    Article  MATH  Google Scholar 

  27. Hecker, S., Varga, A.: Generalized LFT-based representation of parametric uncertain models. Eur. J. Control 10(4), 326–337 (2004). https://doi.org/10.3166/ejc.10.326-337

    Article  MathSciNet  MATH  Google Scholar 

  28. Finozzi, A., Sanfedino, F., Alazard, D.: Parametric sub-structuring models of large space truss structures for structure/control co-design. Mech. Syst. Signal Process. 180, 109427 (2022). https://doi.org/10.1016/j.ymssp.2022.109427

    Article  Google Scholar 

  29. Herber, D.R., Allison, J.T.: Nested and simultaneous solution strategies for general combined plant and control design problems. J. Mech. Des. 141(1), 011402 (2018). https://doi.org/10.1115/1.4040705. https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/141/1/011402/6233143/md_141_01_011402.pdf

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Alazard.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: 6 DOFs TITOP model of a flexible beam

Appendix: 6 DOFs TITOP model of a flexible beam

Let us consider the flexible beam A depicted in Fig. 12, characterized by its length \(l\), width \(b\), height \(h\), Young modulus \(E\), Poisson coefficient \(\nu \) and mass density \(\rho \).

Fig. 12
figure 12

An homogeneous flexible beam A

The 6 DOFs TITOP model summarized in the section is the direct extension of the 3 DOFs (planar) TITOP model presented [23]. It is composed of:

  • the model D PC A , t y r z (s) of the bending dynamics in the (x,y) plane with 4 flexible modes \(\boldsymbol{\eta}_{t_{y}r_{z}}\) detailed in equation (30),

  • the model D PC A , t z r y (s) of the bending dynamics in the (x,z) plane with 4 flexible modes \(\boldsymbol{\eta}_{t_{z}r_{z}}\) detailed in equation (33),

  • the model D PC A , t x (s) of the traction dynamics along the x-axis with 1 flexible mode \(\eta _{t_{x}}\) detailed in equation (34),

  • the model D PC A , r x (s) of the torsion dynamics around the x-axis with 1 flexible mode \(\eta _{r_{x}}\) detailed in equation (35).

The damping ratios of the flexible modes are ignored to lighten the following equations.

[ η ˙ t y r z η ¨ t y r z u ¨ C ( 2 ) u ¨ C ( 6 ) W P / ( 2 ) W P / ( 6 ) ] = [ 0 4 1 4 0 4 × 2 0 4 × 2 I z M f f 1 K 0 4 M f f 1 Φ T M f f 1 M r f I z Φ M f f 1 K 0 4 Φ M f f 1 Φ T τ Φ M f f 1 M r f I z M r f T M f f 1 K 0 4 ( τ Φ M f f 1 M r f ) T M r f T M f f 1 M r f M r r ] × [ η t y r z η ˙ t y r z W / C ( 2 ) W / C ( 6 ) u ¨ P ( 2 ) u ¨ P ( 6 ) ]
(30)

with:

[ M r r M r f T M r f M f f ] = ρ b h l 55440 [ 55440 27720 l 462 l 2 27720 5544 l 462 l 2 27720 l 18480 l 2 198 l 3 19800 l 3432 l 2 264 l 3 462 l 2 198 l 3 6 l 4 181 l 2 52 l 3 5 l 4 27720 19800 l 181 l 2 21720 3732 l 281 l 2 5544 l 3432 l 2 52 l 3 3732 l 832 l 2 69 l 3 462 l 2 264 l 3 5 l 4 281 l 2 69 l 3 6 l 4 ]
(31)
I z =h b 3 /12,K= E 70 l 3 [ 6 l 4 30 l 2 8 l 3 l 4 30 l 2 1200 600 l 30 l 2 8 l 3 600 l 384 l 2 22 l 3 l 4 30 l 2 22 l 3 6 l 4 ] , [ τ T Φ T ] = [ 1 0 l 0 0 0 1 0 0 1 0 0 ] .
(32)
[ η ˙ t z r y η ¨ t z r y u ¨ C ( 3 ) u ¨ C ( 5 ) W P / ( 3 ) W P / ( 5 ) ] = [ 0 4 1 4 0 4 × 2 0 4 × 2 I y M f f 1 K 0 4 M f f 1 Φ T M f f 1 M r f I y Φ M f f 1 K 0 4 Φ M f f 1 Φ T τ Φ M f f 1 M r f I y M r f T M f f 1 K 0 4 ( τ Φ M f f 1 M r f ) T M r f T M f f 1 M r f M r r ] × [ η t z r y η ˙ t z r y W / C ( 3 ) W / C ( 5 ) u ¨ P ( 3 ) u ¨ P ( 5 ) ]
(33)

with \(I_{y}=bh^{3}/12\). The minus sign on inputs and outputs 2 and 4 takes into account that x×z=y.

[ η ˙ t x η ¨ t x u ¨ C ( 1 ) W P / ( 1 ) ] = [ 0 1 0 0 3 E ρ l 2 0 3 ρ b h l 3 2 3 E ρ l 2 0 3 ρ b h l 1 2 3 E b h 2 0 1 2 ρ b h l 4 ] [ η t x η ˙ t x W / C ( 1 ) u ¨ P ( 1 ) ] ,
(34)
[ η ˙ r x η ¨ r x u ¨ C ( 4 ) W P / ( 4 ) ] = [ 0 1 0 0 3 G ρ l 2 0 3 ρ I p l 3 2 3 G ρ l 2 0 3 ρ I p l 1 2 3 G I p 2 l 0 1 2 ρ I p l 4 ] [ η r x η ˙ r x W / C ( 4 ) u ¨ P ( 4 ) ]
(35)

with \(G=\frac{E}{2(1+\nu )}\) and \(\displaystyle I_{p}=I_{z}+I_{y}\).

Then the \(12\times 12\) TITOP model D PC A (s) of the flexible beam is assembled according to Fig. 13.

Fig. 13
figure 13

Block-diagram model of D PC A (s) of a flexible beam

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alazard, D., Finozzi, A. & Sanfedino, F. Port inversions of parametric Two-Input Two-Output Port models of flexible substructures. Multibody Syst Dyn 57, 365–387 (2023). https://doi.org/10.1007/s11044-023-09883-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-023-09883-y

Keywords

Navigation