Skip to main content
Log in

Two trajectory tracking control methods for space hyper-redundant cable-driven robots considering model uncertainty

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Space hyper-redundant cable-driven robots (SHCDRs) have a slender body structure and high dexterity, which is very suitable for complex and limited unstructured space environments. Due to the multi-level coupling relationship between motors, cables, joints, and tips, the accurate mathematical model is also uncertain, making the motion accuracy of the end-effector much lower than that of traditional industrial robots. Based on this, this article proposes two trajectory tracking control (TTC) methods for SHCDRs considering model uncertainty, one is based on model modification, and the other on two-layer iterative learning control (TLILC). This study first establishes a multi-level motion coupling model, and improve the inverse dynamics equation for the control requirements. Then, two different vision feedback-based TTC frameworks are developed. Further, both frameworks are solved by different iterative methods. Finally, in order to demonstrate the superiority of the proposed TTC methods, numerical simulation systems (including VC++, OSG, and MATLAB/Simulink) are conducted on a 12-DOF SHCDR to validate the two proposed methods. The results show that the proposed two vision-based TTC methods have higher tracking accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Algorithm 2
Algorithm 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Kelasidi, E., Liljeback, P., Pettersen, K.Y., Gravdahl, J.T.: Line-of-sight guidance for path following control of underwater snake robots: theory and experiments. IEEE Trans. Robot. 33(3), 610–628 (2017)

    Article  Google Scholar 

  2. Zhou, Z., Zheng, X., Chen, Z., Wang, X., Liang, B., Wang, Q.: Dynamics modeling and analysis of cable-driven segmented manipulator considering friction effects. Mech. Mach. Theory 169(13), 104633 (2022)

    Article  Google Scholar 

  3. Goldman, R., Bajo, A., Maclachlan, L., Pickens, R., Herrell, S.D., Simaan, N.: Design and performance evaluation of a minimally invasive telerobotic platform for transurethral surveillance and intervention. IEEE Trans. Biomed. Eng. 60(4), 918–925 (2013)

    Article  Google Scholar 

  4. Peng, J., Xu, W., Wang, F., Han, Y., Liang, B.: A hybrid hand-eye calibration method for multilink cable-driven hyper-redundant manipulators. IEEE Trans. Instrum. Meas. 70, 5010413 (2021)

    Article  Google Scholar 

  5. Peng, J., Xu, W., Yang, T., Hu, Z., Liang, B.: Dynamic modeling and trajectory tracking control method of segmented linkage cable-driven hyper-redundant robot. Nonlinear Dyn. 101, 233–253 (2020)

    Article  Google Scholar 

  6. Xu, W., Peng, J., Liang, B., Mu, Z.: Hybrid modeling and analysis method for dynamic coupling of space robots. IEEE Trans. Aerosp. Electron. Syst. 52(1), 85–98 (2016)

    Article  Google Scholar 

  7. Liu, X.F., Cai, G.P., Wang, M.M., Chen, W.J.: Contact control for grasping a non-cooperative satellite by a space robot. Multibody Syst. Dyn. 50, 119–141 (2020)

    Article  MathSciNet  Google Scholar 

  8. Kövecses, J., Cleghorn, W.L., Fenton, R.G.: Dynamic modeling and analysis of a robot manipulator intercepting and capturing a moving object with the consideration of structural flexibility. Multibody Syst. Dyn. 3, 137–162 (1999)

    Article  MathSciNet  Google Scholar 

  9. Kimura, S., Takahashi, M., Okuyama, T., Tsuchiya, S., Suzuki, Y.: A fault-tolerant control algorithm having a decentralized autonomous architecture for space hyper-redundant manipulators. IEEE Trans. Syst. Man Cybern., Part A, Syst. Humans 28(4), 521–527 (1998)

    Article  Google Scholar 

  10. Zheng, X., Zhu, X., Chen, Z., Wang, X., Liang, B., Liao, Q.: An efficient dynamic modeling and simulation method of a cable-constrained synchronous rotating mechanism for continuum space manipulator. Aerosp. Sci. Technol. 119(3), 107156 (2021)

    Article  Google Scholar 

  11. Ouyang, X., Meng, D., Wang, X., Wang, C., Liang, B., Ding, N.: Hybrid rigid-continuum dual-arm space robots: modeling, coupling analysis, and coordinated motion planning. Aerosp. Sci. Technol. 116, 106861 (2021). https://doi.org/10.1016/j.ast.2021.106861

    Article  Google Scholar 

  12. da Graa Marcos, M., Tenreiro Machado, J.A., Azevedo-Perdicoúlis, T.-P.: A fractional approach for the motion planning of redundant and hyper-redundant manipulators. Signal Process. 91(3), 562–570 (2011)

    Article  Google Scholar 

  13. Ba, W., Dong, X., Mohammad, A., Wang, M., Axinte, D., Norton, A.: Design and validation of a novel fuzzy-logic-based static feedback controller for tendon-driven continuum robots. IEEE/ASME Trans. Mechatron. 26(6), 3010–3021 (2021)

    Article  Google Scholar 

  14. Bajo, A., Simaan, N.: Hybrid motion/force control of multi-backbone continuum robots. Int. J. Robot. Res. 35(4), 422–434 (2015)

    Article  Google Scholar 

  15. Yuan, H., Zhang, W., Dai, Y., Xu, W.: Analytical and numerical methods for the stiffness modeling of cable-driven serpentine manipulators. Mech. Mach. Theory 156(3), 104179 (2021)

    Article  Google Scholar 

  16. Yuan, H., Zhou, L., Xu, W.: A comprehensive static model of cable-driven multi-section continuum robots considering friction effect. Mech. Mach. Theory 135, 130–149 (2019)

    Article  Google Scholar 

  17. Hannan, M.W., Walker, I.D.: Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots. J. Field Robot. 20(2), 45–63 (2003)

    MATH  Google Scholar 

  18. Gravagne, I.A., Rahn, C.D., Walker, I.D.: Large deflection dynamics and control for planar continuum robots. IEEE/ASME Trans. Mechatron. 8(2), 299–307 (2003)

    Article  Google Scholar 

  19. Chirikjian, G.S., Burdick, J.W.: A modal approach to hyper-redundant manipulator kinematics. IEEE Trans. Robot. Autom. 10(3), 343–354 (1994)

    Article  Google Scholar 

  20. Agrawal, S.K., Li, S., Annapragada, M.: Hyper-redundant planar manipulators: motion planning with discrete modal summation procedure. In: IEEE International Conference on Robotics and Automation, San Diego, CA, USA, pp. 1581–1586 (1994)

    Google Scholar 

  21. Reznik, D., Lumelsky, V.: Sensor-based motion planning in three dimensions for a highly redundant snake robot. Adv. Robot. 9(3), 255–280 (1994)

    Article  Google Scholar 

  22. Williams, R.L.: Follow-the-leader algorithm for the payload inspection and processing system. In: 1995 Research Reports NASA/ASEE Summer Faculty Fellowship Program, NASA/MSFC, USA, pp. 613–641 (1995)

    Google Scholar 

  23. Aristidou, A., Lasenby, J.: FABRIK: a fast, iterative solver for the Inverse Kinematics problem. Graph. Models 73(5), 243–260 (2011)

    Article  Google Scholar 

  24. Zhang, Y., Zhang, Z.: Repetitive Motion Planning and Control of Redundant Robot Manipulators. Springer, Berlin (2014)

    MATH  Google Scholar 

  25. Camarillo, D.B., Carlson, C.R., Salisbury, J.K.: Task-space control of continuum manipulators with coupled tendon drive. Springer Tracts Adv. Robot. 54, 271–280 (2009)

    Article  Google Scholar 

  26. George, T.T., Ansari, Y., Falotico, E., et al.: Control strategies for soft robotic manipulators: a survey. Soft Robot. 5(2), 149–163 (2018)

    Article  Google Scholar 

  27. Gravagne, I.A., Walker, I.D.: Uniform regulation of a multi-section continuum manipulator. In: IEEE International Conference on Robotics and Automation, Washington, DC, USA, pp. 1519–1524. IEEE Press, New York (2002)

    Google Scholar 

  28. Kapadia, A., Walker, I.D.: Task-space control of extensible continuum manipulators. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, pp. 1087–1092 (2011)

    Google Scholar 

  29. Kapadia, A.D., Walker, I.D., Dawson, D.M., Tatlicioglu, E.: A model-based sliding mode controller for extensible continuum robots. In: 9th WSEAS International Conference on Signal Processing, Robotics and Automation, Cambridge, UK, pp. 113–120 (2010)

    Google Scholar 

  30. Falkenhahn, V., Hildebrandt, A., Neumann, R., Sawodny, O.: Model-based feedforward position control of constant curvature continuum robots using feedback linearization. In: IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, pp. 762–767 (2015)

    Chapter  Google Scholar 

  31. Lee, K.H., Fu, D.K.C., Leong, M.C.W., Chow, M., Fu, H.C., Althoefer, K., Sze, K.Y., Yeung, C.K., Kwok, K.W.: Nonparametric online learning control for soft continuum robot: an enabling technique for effective endoscopic navigation. Soft Robot. 4(4), 324–337 (2017)

    Article  Google Scholar 

  32. Yip, M.C., Camarillo, D.B.: Model-less feedback control of continuum manipulators in constrained environments. IEEE Trans. Robot. 30(4), 880–889 (2014)

    Article  Google Scholar 

  33. Wang, X., Fang, G., Wang, K., Xie, X., Lee, K.H., Ho, J., Tang, W.L., Lam, J., Kwok, K.W.: Eye-in-hand visual servoing enhanced with sparse strain measurement for soft continuum robots. IEEE Robot. Autom. Lett. 5(2), 2161–2168 (2020)

    Article  Google Scholar 

  34. Yang, B.H., Chen, W.D., Liang, X.W., Pfeifer, R., Wang, H.: Visual servoing of soft robot manipulator in constrained environments with an adaptive controller. IEEE/ASME Trans. Mechatron. 22(1), 41–50 (2016)

    Google Scholar 

  35. Fang, G., Wang, X., Wang, K., Lee, K.H., Ho, J.D.L., Fu, H.C., Kin, C.D., Kwok, K.W.: Vision-based online learning kinematic control for soft robots using local Gaussian process regression. IEEE Robot. Autom. Lett. 4(2), 1194–1201 (2019)

    Article  Google Scholar 

  36. Li, Y., Kao, I.: Stiffness control on redundant manipulators: a unique and kinematically consistent solution. In: IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, vol. 4, pp. 3956–3961 (2004)

    Google Scholar 

  37. Coronel-Escamilla, A., Torres, F., Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., Guerrero-Ramírez, G.V.: On the trajectory tracking control for an SCARA robot manipulator in a fractional model driven by induction motors with PSO tuning. Multibody Syst. Dyn. 43, 257–277 (2018)

    Article  MathSciNet  Google Scholar 

  38. Peng, J., Xu, W., Yan, L., Pan, E., Liang, B., Wu, A.: A pose measurement method of a space non-cooperative target based on maximum outer contour recognition. IEEE Trans. Aerosp. Electron. Syst. 56(1), 512–526 (2020)

    Article  Google Scholar 

  39. Potts, A., Da Cruz, J.: Optimal power loss motion planning in legged robots. Robotica 34(2), 423–448 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 62103454, the Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515110680, the Shenzhen Municipal Basic Research Project for Natural Science Foundation under Grant JCYJ20190806143408992, and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grant No. 2021qntd08). Thanks to the Prof. Darwin Lau from The Chinese University of Hong Kong for his precious comments that have significantly improved the completeness and quality of the ILC controller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqing Peng.

Ethics declarations

Conflict of interest and ethical standard statement

PENG, ZHANG, GE, and HAN declare that they have no proprietary, financial, professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled “Vision Feedback-based Trajectory Tracking Control Method of Space Hyper-Redundant Cable-Driven Robots”.

The work described has not been submitted elsewhere for publication, in whole or in part, and all the authors listed have approved the manuscript that is enclosed. We have read and have abided by the statement of ethical standards for manuscripts submitted to Multibody System Dynamics.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Zhang, C., Ge, D. et al. Two trajectory tracking control methods for space hyper-redundant cable-driven robots considering model uncertainty. Multibody Syst Dyn 56, 123–152 (2022). https://doi.org/10.1007/s11044-022-09840-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-022-09840-1

Keywords

Navigation