Skip to main content
Log in

Modelling and stabilization of a load suspended by cable from an airship

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper we present the modeling of an airship with a load suspended by a flexible heavy cable. The objective is to determine a control law that allows to stabilize the machine and its load under the effect of a gust of wind. In order to overcome the great inertia of the airship and the impossibility of using the accelerations of the latter to attenuate the oscillations of the suspended load, a new actuator was proposed at the exit of the cable in order to control its oscillations, namely a motorized cardan joint. The methodology of the study consisted of extracting a reduced dynamic model, which allowed us to build a robust control vector in order to stabilize the suspended load. The analysis of the stability of the zero dynamics of the system was carried out by means of the phase portraits of Poincaré. Numerical simulations were carried out and demonstrated the interest of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Liao, L., Pasternak, I.D.: A review of airship structural research and developments. Prog. Aerosp. Sci. 45(4–5), 83–96 (2009)

    Article  Google Scholar 

  2. Manikandan, M., Pant, R.: Research and advancements in hybrid airships—a review. Prog. Aerosp. Sci. (2021). https://doi.org/10.1016/j.paerosci.2021.100741

    Article  Google Scholar 

  3. Bisgaard, M., la Cour-Harbo, A., Bendtsen, J.D.: Full state estimation for helicopter slung load system. In: AIAA Guidance, Navigation, and Control Conference, Hilton Head, SC, vol. 4, pp. 4036–4050 (2007)

    Google Scholar 

  4. Oh, S.R., Ryu, J-C., Agrawal, S.K.: Dynamics and control of a helicopter carrying a payload using a cable-suspended robot. J. Mech. Des. 128(5), 1113–1121 (2006). https://doi.org/10.1115/1.2218882

    Article  Google Scholar 

  5. Dukes, T.A.: Maneuvering heavy sling loads near hover part I: damping the pendulous motion. J. Am. Helicopter Soc. 18(2), 2–11 (1973)

    Article  Google Scholar 

  6. Guerrero, M.E., Mercado, D.A., Lozano, R., García, C.D.: Ida-pbc methodology for a quadrotor UAV transporting a cable-suspended payload. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, pp. 470–476 (2015). https://doi.org/10.1109/ICUAS.2015.7152325

    Chapter  Google Scholar 

  7. Us, K.Y., Cevher, A., Sever, M., Kirli, A.: On the effect of slung load on quadrotor performance. Proc. Comput. Sci. 158, 346–354 (2019)

    Article  Google Scholar 

  8. Cruz, P.J., Oishi, M., Fierro, R.: Lift of a cable-suspended load by a quadrotor: a hybrid system approach. In: American Control Conference (ACC), pp. 1887–1892 (2015). https://doi.org/10.1109/ACC.2015.7171008

    Chapter  Google Scholar 

  9. Oh, S.R., Mankala, K.K., Agrawal, S.K., et al.: Dynamic modeling and robust controller design of a two-stage parallel cable robot. Multibody Syst. Dyn. 13, 385–399 (2005). https://doi.org/10.1007/s11044-005-2517-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, X., Shan, X.: Airship attitude tracking system. Appl. Math. Mech. 27(7), 919–926 (2006)

    Article  MathSciNet  Google Scholar 

  11. Sang-Jong, L., Dong-Min, K., Hyo-Choong, B.: Feedback linearization controller for semi station keeping of the unmanned airship. In: AIAA 5th ATIO and 16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences, p. 7343 (2005)

    Google Scholar 

  12. Chang-Su, P., Hyunjae, L., Min-Jea, T., Hyochoong, B.: Airship control using neural network augmented model inversion. In: Proceedings of 2003 IEEE Conference on Control Applications, vol. 1, pp. 558–563 (2003). https://doi.org/10.1109/CCA.2003.1223497

    Chapter  Google Scholar 

  13. Hauser, J., Sastry, S., Meyer, G.: Nonlinear control design for slightly non-minimum phase systems: application to v/stol aircraft. Automatica 28(4), 665–679 (1992)

    Article  MathSciNet  Google Scholar 

  14. Spong, M.W., Block, D.J.: The pendubot: a mechatronic system for control research and education. In: Proceedings of the 34th IEEE Conference on Decision and Control, vol. 1, pp. 555–556 (1995)

    Google Scholar 

  15. Pérez Polo, M.F., Molina, M.P., Chica, J.G.: Swingup and positioning control of an inverted wheeled cart pendulum system with chaotic balancing motions. Int. J. Non-Linear Mech. 47(6), 655–665 (2012)

    Article  Google Scholar 

  16. Spong, M.W.: Energy based control of a class of underactuated mechanical systems. IFAC Proc. Vol. 29(1), 2828–2832 (1996)

    Article  Google Scholar 

  17. Azouz, N., Khamlia, M., Lerbet, J., Abichou, A.: Stabilization of an unconventional large airship when hovering. Appl. Sci. 11(8), 3551 (2021). https://doi.org/10.3390/app11083551

    Article  Google Scholar 

  18. Chaabani, S., Azouz, N.: Estimation of the virtual masses of a large unconventional airship based on purely analytical method to aid in the preliminary design. Aircr. Eng. Aerosp. Technol. (2021). https://doi.org/10.1108/AEAT-12-2020-0304

    Article  Google Scholar 

  19. Fossen, T.I.: Guidance and Control of Ocean Vehicles. Wiley, New York (1994)

    Google Scholar 

  20. Meirovitch, L.: Hybrid state equations of motion for flexible bodies in terms of quasi-coordinates. J. Guid. Control Dyn. 14(5), 1008–1013 (1991)

    Article  Google Scholar 

  21. Meirovitch, L., Stemple, T.: Hybrid equations of motion for flexible multibody systems using quasicoordinates. J. Guid. Control Dyn. 18(4), 678–688 (1995)

    Article  Google Scholar 

  22. Kane, T.R., Ryan, R., Banerjee, A.K.: Dynamics of a cantilever beam attached to a moving base. J. Guid. Control Dyn. 10(2), 139–151 (1987)

    Article  Google Scholar 

  23. Piedboeuf, J.: Six methods to model a flexible beam rotating in the vertical plane. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), Seoul, South Korea, vol. 3, pp. 2832–2839 (2001). https://doi.org/10.1109/ROBOT.2001.933051

    Chapter  Google Scholar 

  24. Du, J., Agrawal, S.K.: Dynamic modeling of cable-driven parallel manipulators with distributed mass flexible cables. J. Vib. Acoust. 137(2), 021020 (2015). https://doi.org/10.1115/1.4029486

    Article  Google Scholar 

  25. Meirovitch, L.: Fundamentals of Vibrations. McGraw-Hill, Boston (2001)

    Book  Google Scholar 

  26. Poincaré, H.: Mémoire sur les courbes définies par une équation différentielle (i). J. Math. Pures Appl. 7, 375–422 (1881)

    MATH  Google Scholar 

  27. Poincaré, H.: Mémoire sur les courbes définies par une équation différentielle (ii). J. Math. Pures Appl. 8, 251–296 (1882)

    MATH  Google Scholar 

  28. Poincaré, H.: Sur les courbes définies par les équations différentielles (iv). J. Math. Pures Appl. 2, 151–218 (1886)

    MATH  Google Scholar 

  29. Asada, H., Slotine, J.-J.E.: Robot Analysis and Control. Wiley, New York (1986)

    Google Scholar 

  30. Leitmann, G.: The Calculus of Variations and Optimal Control. Mathematical Concepts and Methods in Science and Engineering. Springer, New York, USA (1981)

    Google Scholar 

  31. Petit, N., Rouchon, P.: Flatness of heavy chain systems. SIAM J. Control Optim. 40(2), 475–495 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoufel Azouz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The discretized kinetic energy is written as:

$$\begin{aligned} T &= \frac{1}{2}[(\rho L + M_{s} + M_{D})u^{2} + (I_{s} + I_{m} + M_{s}(L + r_{s})^{2} + \rho \frac{L^{3}}{3})q_{1}^{2} \\ &\quad{}+ \delta ^{t}(M_{s}\omega _{L}\omega _{L}^{t} + r_{s}^{2}M_{s}\omega _{z_{2},L}\omega _{z_{2},L}^{t} + \rho \int _{0}^{L} \omega \omega ^{t}dz_{2} - \rho \int _{0}^{L} z_{2}\int _{0}^{z_{2}} \omega _{s}\omega _{s}^{t}dsdz_{2})\delta q_{1}^{2} \\ &\quad{} + (2\rho \int _{0}^{L} \omega ^{t}dz_{2} + 2M_{s}\omega _{L}^{t} + 2M_{s}r_{s}\omega _{z_{2},L}^{t})\dot{\delta} c\theta _{s}u \\ &\quad{} + \delta ^{t}( - 2M_{s}r_{s}\omega _{L}'\omega _{z_{2},L}^{t} - 2M_{s}\int _{0}^{L} \omega _{z_{2}}\omega _{z_{2}}^{t}dz_{2} + 2\rho \int _{0}^{L} \int _{0}^{z_{2}} \omega _{s}\omega _{s}^{t}dsdz_{2})s\theta _{s}u\dot{\delta} \\ &\quad{} + (2I_{s}\omega _{z_{2},L}^{t} + 2M_{s}(L + r_{s})\omega _{L}^{t} + 2M_{s}r_{s}(L + r_{s})\omega _{z_{2},L}^{t} + 2\rho \int _{0}^{L} z_{2}\omega ^{t}dz_{2})\dot{\delta} q_{1} \\ &\quad{} + ((L^{2}\rho + 2M_{s}(L + r_{s}) + \delta ^{t}( - \rho \int _{0}^{L} \int _{0}^{z_{2}} \omega _{s}\omega _{s}^{t}dsdz_{2} - M_{s}r_{s}\omega _{z_{2},L}\omega _{z_{2},L}^{t} \\ &\quad{} - M_{s}\int _{0}^{L} \omega _{z_{2}}\omega _{z_{2}}^{t}ds)\delta )c\theta _{s} + (2\rho \int _{0}^{L} \omega ^{t}dz_{2} - 2M_{s}\omega _{L}^{t} + 2M_{s}r_{s}\omega _{z_{2},L}^{t})\delta s\theta _{s})uq_{1} \\ &\quad{} + \dot{\delta}^{t}(\rho \int _{0}^{L} \omega \omega ^{t}dz_{2} + I_{s}\omega _{z_{2},L}\omega _{z_{2},L}^{t} + M_{s}(\omega _{L}\omega _{L}^{t} + \omega _{z_{2},L}\omega _{z_{2},L}^{t}r_{s}^{2} + 2r_{s}\omega _{L}\omega _{z_{2},L}^{t})\dot{\delta} )] \end{aligned}$$
(72)

To simplify the writing of kinetic energy, the following intermediate quantities are used:

$$\begin{aligned} &A_{1} = \rho L + M_{s} + M_{A} \\ &A_{2} = I_{s} + I_{m} + M_{s}(L + r_{s})^{2} + \rho \frac{L^{3}}{3} \\ &A_{3} = - \rho \int _{0}^{L} z_{2}\int _{0}^{z_{2}} \omega _{z_{2}}\omega _{z_{2}}^{t}dsdz_{2} + \rho \int _{0}^{L} \omega \omega ^{t}dz_{2} + M_{s}\omega _{L}\omega _{L}^{t} + r_{s}^{2}M_{s}\omega _{z_{2},L}\omega _{z_{2},L}^{t} \\ &A_{4} = 2\rho \int _{0}^{L} \omega ^{t}dz_{2} + 2M_{s}\omega _{L}^{t} + 2M_{s}r_{s}\omega _{z_{2},L}^{t} \\ &A_{5} = 2\rho \int _{0}^{L} \int _{0}^{z_{2}} \omega _{z_{2}}\omega _{z_{2}}^{t}dsdz_{2} - 2M_{s}\int _{0}^{L} \omega _{z_{2}}\omega _{z_{2}}^{t}dz_{2} - 2M_{s}r_{s}\omega _{L}'\omega _{z_{2},L}^{t} \\ &A_{6} = 2\rho \int _{0}^{L} z_{2}\omega ^{t}dz_{2} + 2I_{s}\omega _{z_{2},L}^{t} + 2M_{s}(L + r_{s})\omega _{L}^{t} + 2M_{s}r_{s}(L + r_{s})\omega _{z_{2},L}^{t} \\ &A_{7} = L^{2}\rho + 2M_{s}(L + r_{s}) \\ &A_{8} = - \rho \int _{0}^{L} \int _{0}^{z_{2}} \omega _{z_{2}}\omega _{z_{2}}^{t}dsdz_{2} - M_{s}r_{s}\omega _{z_{2},L}\omega _{z_{2},L}^{t} - M_{s}\int _{0}^{L} \omega _{z_{2}}\omega _{z_{2}}^{t}dz_{2} \\ &A_{9} = 2\rho \int _{0}^{L} \omega ^{t}dz_{2} - 2M_{s}\omega _{L}^{t} + 2M_{s}r_{s}\omega _{z_{2},L}^{t} \\ & A_{10} = \rho \int _{0}^{L} \omega \omega ^{t}dz_{2} + I_{s}\omega _{z_{2},L}\omega _{z_{2},L}^{t} + M_{s}(\omega _{L}\omega _{L}^{t} + \omega _{z_{2},L}\omega _{z_{2},L}^{t}r_{s}^{2} + 2r_{s}\omega _{L}\omega _{z_{2},L}^{t}) \end{aligned}$$
(73)

The potential energy is discretized as follows:

$$\begin{aligned} V &= \frac{1}{2}\delta ^{t}EI_{y_{2}}\int _{0}^{L} \omega _{z_{2}z_{2}}\omega _{z_{2}z_{2}}^{t}dz_{2}\delta + g\rho \int _{0}^{L} \omega ^{t}dz_{2}\delta .s\theta _{s} \\ &\quad{} - g\rho .c\theta _{s}(\frac{L^{2}}{2} - \delta ^{t}\frac{1}{2}\int _{0}^{L} \int _{0}^{z_{2}} \omega _{s}\omega _{s}^{t}dsdz_{2}\delta ) + M_{s}g.s\theta _{s}(\omega _{L}^{t}\delta - r_{s}\omega _{z_{2},L}^{t}\delta ) \\ &\quad{} - M_{s}g.c\theta _{s}(L + r_{s} - \delta ^{t}\frac{1}{2}r_{s}\omega _{z_{2},L}\omega _{z_{2},L}^{t}\delta - \delta ^{t}\frac{1}{2}\int _{0}^{L} \omega _{z_{2}}\omega _{z_{2}}^{t}ds\delta ) \\ & = \frac{1}{2}\delta ^{t}EI_{y_{2}}\int _{0}^{L} \omega _{z_{2}z_{2}}\omega _{z_{2}z_{2}}^{t}dz_{2}\delta + ( - \rho \frac{L^{2}}{2} - (L + r_{s})M_{s})g.c\theta _{s} \\ &\quad{}+ \frac{1}{2}\delta ^{t}(\rho \int _{0}^{L} \int _{0}^{z_{2}} \omega _{s}\omega _{s}^{t}dsdz_{2} + M_{s}(\frac{1}{2}r_{s}\omega _{z_{2},L}\omega _{z_{2},L}^{t} + \frac{1}{2}\int _{0}^{L} \omega _{z_{2}}\omega _{z_{2}}^{t}dz_{2}))\delta g.c\theta _{s} \\ &\quad{} + g.s\theta _{s}(\rho \int _{0}^{L} \omega ^{t}dz_{2} + M_{s}(\omega _{L}^{t} - r_{s}\omega _{z_{2},L}^{t}))\delta \end{aligned}$$
(74)

with:

$$ K_{ff} = EI_{y_{2}}\int _{0}^{L} \omega _{z_{2}z_{2}}\omega _{z_{2}z_{2}}^{t}dz_{2} $$
(75)
$$ G_{rr} = ( - \rho \frac{L^{2}}{2} - (L + r_{s})M_{s})g $$
(76)
$$ G_{rf} = (\rho \int _{0}^{L} \int _{0}^{z_{2}} \omega _{s}\omega _{s}^{t}dsdz_{2} + M_{s}(\frac{1}{2}r_{s}\omega _{z_{2},L}\omega _{z_{2},L}^{t} + \frac{1}{2}\int _{0}^{L} \omega _{z_{2}}\omega _{z_{2}}^{t}dz_{2}))g $$
(77)
$$ G_{ff} = (\rho \int _{0}^{L} \omega ^{t}dz_{2} + M_{s}(\omega _{L}^{t} - r_{s}\omega _{z_{2},L}^{t}))g $$
(78)
$$\begin{aligned} G(X_{1}) & = \left ( \textstyle\begin{array}{c@{\quad}c@{\quad}c} 0 & 0 & 0 \\ 0 & - G_{rr} - \frac{1}{2}\delta ^{t}G_{rf}\delta & G_{ff} \\ 0 & G_{ff}^{t} & G_{rf} \end{array}\displaystyle \right )\left ( \textstyle\begin{array}{c} 0 \\ s\theta _{s} \\ c\theta _{s}\delta \end{array}\displaystyle \right ) \\ & = \left ( \textstyle\begin{array}{c} 0 \\ \left ( - G_{rr} - \frac{1}{2}\delta ^{t}G_{rf}\delta \right )s\theta _{s} + G_{ff}.c\theta _{s}\delta \\ G_{ff}^{t}.s\theta _{s} + G_{rf}.c\theta _{s}\delta \end{array}\displaystyle \right ) \end{aligned}$$
(79)
$$ C(X_{1},\dot{X}_{1}) = \left ( \textstyle\begin{array}{c} \textstyle\begin{array}{l} \frac{1}{2}( - A_{4}q.s\theta _{s} + \delta ^{t}A_{5}q.c\theta _{s} + \dot{\delta}^{t}A_{5}.s\theta _{s})\dot{\delta} \\ \quad{} + \frac{1}{2}( - \delta ^{t}A_{8}\delta q.s\theta _{s} + 2\delta ^{t}A_{8}\dot{\delta} c\theta _{s} + A_{9}\delta qc\theta _{s} + A_{9}\dot{\delta} s\theta _{s})q \end{array}\displaystyle \\ \textstyle\begin{array}{l} 2\delta ^{t}A_{3}\dot{\delta} q + \frac{1}{2}( - \delta ^{t}A_{8}\delta q.s\theta _{s} + 2\delta ^{t}A_{8}\dot{\delta} c\theta _{s} + A_{9}\delta qc\theta _{s} + A_{9}\dot{\delta} s\theta _{s})u \\ \quad{} - \frac{1}{2}( - A_{4}s\theta _{s} + \delta ^{t}A_{5}c\theta _{s})u\dot{\delta} - \frac{1}{2}( - \delta ^{t}A_{8}\delta s\theta _{s} + A_{9}\delta c\theta _{s})uq \end{array}\displaystyle \\ \textstyle\begin{array}{l} \frac{1}{2}( - A_{4}qs\theta _{s} + \delta ^{t}A_{5}qc\theta _{s} + \dot{\delta}^{t}A_{5}.s\theta _{s})^{t}u - A_{3}\delta q^{2} \\ \quad{}- \frac{1}{2}A_{5}.s\theta _{s}u\dot{\delta} - \frac{1}{2}(2A_{8}\delta c\theta _{s} + A_{9}.s\theta _{s})uq \end{array}\displaystyle \end{array}\displaystyle \right ) $$
(80)

\(B\) the damping matrix:

$$ B = \left ( \textstyle\begin{array}{c@{\quad}c@{\quad}c} 0 & 0 & 0 \\ 0 & \kappa _{m} & 0 \\ 0 & 0 & B_{ff} \end{array}\displaystyle \right ) $$
(81)

\(K\) the stiffness matrix:

$$ K = \left ( \textstyle\begin{array}{c@{\quad}c@{\quad}c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & K_{ff} \end{array}\displaystyle \right ) $$
(82)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azouz, N., Khamlia, M., Lerbet, J. et al. Modelling and stabilization of a load suspended by cable from an airship. Multibody Syst Dyn 55, 399–431 (2022). https://doi.org/10.1007/s11044-022-09831-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-022-09831-2

Keywords

Navigation