Skip to main content

Contact mechanics for dynamical systems: a comprehensive review

Abstract

This work reviews the main techniques to model dynamical systems with contact-impact events. Regularized and non-smooth formulations are considered, wherein the fundamental features associated with each approach are analyzed. A brief description of contact dynamics is presented, and an overview of the state-of-the-art of the main aspects related to the contact dynamics discipline is provided. This paper ends by identifying gaps in the current techniques and prospects for future research in the field of contact mechanics in multibody dynamics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

References

  1. 1.

    Pereira, M.S., Nikravesh, P.: Impact dynamics of multibody systems with frictional contact using joint coordinates and canonical equations of motion. Nonlinear Dyn. 9(1–2), 53–71 (1996)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Lankarani, H.M., Pereira, M.F.O.S.: Treatment of impact with friction in planar multibody mechanical systems. Multibody Syst. Dyn. 6(3), 203–227 (2001)

    MATH  Article  Google Scholar 

  3. 3.

    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    MATH  Book  Google Scholar 

  4. 4.

    Hu, H., Zheng, J., Zhan, E., Yu, L.: Curve similarity model for real-time gait phase detection based on ground contact forces. Sensors 19(14), 3235 (2019)

    Article  Google Scholar 

  5. 5.

    Jebrane, A., Argoul, P., Hakim, A., El Rhabi, M.: Estimating contact forces and pressure in a dense crowd: microscopic and macroscopic models. Appl. Math. Model. 74, 409–421 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Jian, B., Hu, G.M., Fang, Z.Q., Zhou, H.J., Xia, R.: Comparative behavior of damping terms of viscoelastic contact force models with consideration on relaxation time. Powder Technol. 356, 735–749 (2019)

    Article  Google Scholar 

  7. 7.

    Parsi, S.S., Rajeev, A., Uddin, A., Shelke, A., Uddin, N.: Probabilistic contact force model for low velocity impact on honeycomb structure. Sustain. Resilient Infrastruct. 4(2), 51–65 (2019)

    Article  Google Scholar 

  8. 8.

    Serrancolí, G., Kinney, A.L., Fregly, B.J.: Influence of musculoskeletal model parameter values on prediction of accurate knee contact forces during walking. Med. Eng. Phys. 85, 35–47 (2020)

    Article  Google Scholar 

  9. 9.

    Wan, Q., Liu, G., Song, C., Zhou, Y., Ma, S., Tong, R.: Study on the dynamic interaction of multiple clearance joints for flap actuation system with a modified contact force model. J. Mech. Sci. Technol. 34, 2701–2713 (2020)

    Article  Google Scholar 

  10. 10.

    Hao, K.A., Nichols, J.A.: Simulating finger-tip force using two common contact models: Hunt-Crossley and elastic foundation. J. Biomech. 119, 110334 (2021)

    Article  Google Scholar 

  11. 11.

    Ma, J., Dong, S., Chen, G., Peng, P., Qian, L.: A data-driven normal contact force model based on artificial neural network for complex contacting surfaces. Mech. Syst. Signal Process. 156, 107612 (2021)

    Article  Google Scholar 

  12. 12.

    He, X., Wu, W., Wang, S.: A constitutive model for granular materials with evolving contact structure and contact forces – Part I: framework. Granul. Matter 21(2), 16 (2019)

    Article  Google Scholar 

  13. 13.

    He, X., Wu, W., Wang, S.: A constitutive model for granular materials with evolving contact structure and contact forces – Part II: constitutive equations. Granul. Matter 21(2), 20 (2019)

    Article  Google Scholar 

  14. 14.

    Olsson, E., Jelagin, D.: A contact model for the normal force between viscoelastic particles in discrete element simulations. Powder Technol. 342, 985–991 (2019)

    Article  Google Scholar 

  15. 15.

    Qu, T., Feng, Y.T., Zhao, T., Wang, M.: Calibration of linear contact stiffnesses in discrete element models using a hybrid analytical-computational framework. Powder Technol. 356, 795–807 (2019)

    Article  Google Scholar 

  16. 16.

    Arifuzzaman, S.M., Dong, K., Hou, Q., Zhu, H., Zeng, Q.: Explicit contact force model for superellipses by Fourier transform and application to superellipse packing. Powder Technol. 361, 112–123 (2020)

    Article  Google Scholar 

  17. 17.

    Kildashti, K., Dong, K., Samali, B.: An accurate geometric contact force model for super-quadric particles. Comput. Methods Appl. Mech. Eng. 360, 112774 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Ma, J., Chen, G., Ji, L., Qian, L., Dong, S.: A general methodology to establish the contact force model for complex contacting surfaces. Mech. Syst. Signal Process. 140, 106678 (2020)

    Article  Google Scholar 

  19. 19.

    Ambrósio, J.: A general formulation for the contact between superellipsoid surfaces and nodal points. Multibody Syst. Dyn. 50, 415–434 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Brogliato, B., Kovecses, J., Acary, V.: The contact problem in Lagrangian systems with redundant frictional bilateral and unilateral constraints and singular mass matrix. The all-sticking contacts problem. Multibody Syst. Dyn. 48, 151–192 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Liu, X.-F., Cai, G.-P., Wang, M.-M., Chen, W.-J.: Contact control for grasping a non-cooperative satellite by a space robot. Multibody Syst. Dyn. 50, 119–141 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Poursina, M., Nikravesh, P.E.: Optimal damping coefficient for a class of continuous contact models. Multibody Syst. Dyn. 50, 169–188 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  23. 23.

    Poursina, M., Nikravesh, P.E.: Characterization of the optimal damping coefficient in the continuous contact model. J. Comput. Nonlinear Dyn. 15(9), 091005 (2020)

    MATH  Article  Google Scholar 

  24. 24.

    Paraskevopoulos, E., Passas, P., Natsiavas, S.: A novel return map in non-flat configuration spaces \(o\)f multibody systems with impact. Int. J. Solids Struct. 202, 822–834 (2020)

    Article  Google Scholar 

  25. 25.

    Kelly, C., Olsen, N., Negrut, D.: Billion degree of freedom granular dynamics simulation on commodity hardware via heterogeneous data-type representation. Multibody Syst. Dyn. 50, 355–379 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Docquier, N., Lantsoght, O., Dubois, F., Brüls, J.: Modelling and simulation of coupled multibody systems and granular media using the non-smooth contact dynamics approach. Multibody Syst. Dyn. 49, 181–202 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Cosimo, A., Cavalieri, J.J., Galvez, J., Cardona, A., Brüls, O.: A general purpose formulation for nonsmooth dynamics with finite rotations: application to the woodpecker toy. J. Comput. Nonlinear Dyn. 16(3), 031001 (2021)

    Article  Google Scholar 

  28. 28.

    Becker, V., Kamlah, M.: A theoretical model for the normal contact force of two elastoplastic ellipsoidal bodies. J. Appl. Mech. 88(3), 031006 (2021)

    Article  Google Scholar 

  29. 29.

    Endres, S.C., Ciacchi, L.C., Mädler, L.: A review of contact force models between nanoparticles in agglomerates, aggregates, and films. J. Aerosol Sci. 153, 105719 (2021)

    Article  Google Scholar 

  30. 30.

    Rakhsha, M., Yang, L., Hu, W., Negrut, D.: On the use of multibody dynamics techniques to simulate fluid dynamics and fluid–solid interaction problems. Multibody Syst. Dyn. 53, 29–57 (2021)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Wang, K., Tian, Q., Hu, H.: Nonsmooth spatial frictional contact dynamics of multibody systems. Multibody Syst. Dyn. 53, 1–27 (2021)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Seifried, R., Hu, B., Eberhard, P.: Numerical and experimental investigation of radial impacts on a half-circular plate. Multibody Syst. Dyn. 9(3), 265–281 (2003)

    MATH  Article  Google Scholar 

  33. 33.

    Schiehlen, W., Seifried, R.: Three approaches for elastodynamic contact in multibody systems. Multibody Syst. Dyn. 12(1), 1–16 (2004)

    MATH  Article  Google Scholar 

  34. 34.

    Seifried, R., Schiehlen, W., Eberhard, P.: Numerical and experimental evaluation of the coefficient of restitution for repeated impacts. Int. J. Impact Eng. 32(1–4), 508–524 (2005)

    Article  Google Scholar 

  35. 35.

    Schiehlen, W., Seifried, R., Eberhard, P.: Elastoplastic phenomena in multibody impact dynamics. Comput. Methods Appl. Mech. Eng. 195(50–51), 6874–6890 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Bing, S., Ye, J.: Dynamic analysis of the reheat-stop-valve mechanism with revolute clearance joint in consideration of thermal effect. Mech. Mach. Theory 43(12), 1625–1638 (2008)

    MATH  Article  Google Scholar 

  37. 37.

    Natsiavas, S.: Analytical modeling of discrete mechanical systems involving contact, impact, and friction. Appl. Mech. Rev. 71(5), 050802 (2019)

    Article  Google Scholar 

  38. 38.

    Bhattacharjee, A., Chatterjee, A.: Restitution modeling in vibration-dominated impacts using energy minimization under outward constraints. Int. J. Mech. Sci. 166, 105215 (2020)

    Article  Google Scholar 

  39. 39.

    Peng, Q., Ye, X., Wu, H., Liu, X., Wei, Y.G.: Effect of plasticity on dynamic impact in a journal-bearing system: a planar case. Mech. Mach. Theory 154, 104034 (2020)

    Article  Google Scholar 

  40. 40.

    Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42(2), 440–445 (1975)

    Article  Google Scholar 

  41. 41.

    Khulief, Y.A., Shabana, A.A.: Impact responses of multi-body systems with consistent and lumped masses. J. Sound Vib. 104(2), 187–207 (1986)

    MATH  Article  Google Scholar 

  42. 42.

    Khulief, Y.A., Shabana, A.A.: A continuous force model for the impact analysis of flexible multibody systems. Mech. Mach. Theory 22(3), 213–224 (1987)

    Article  Google Scholar 

  43. 43.

    Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990)

    Article  Google Scholar 

  44. 44.

    Lankarani, H.M., Nikravesh, P.E.: Canonical impulse-momentum equations for impact analysis of multibody systems. J. Mech. Des. 114(1), 180–186 (1992)

    Article  Google Scholar 

  45. 45.

    Glocker, Ch., Pfeiffer, F.: Dynamical systems with unilateral contacts. Nonlinear Dyn. 3(4), 245–259 (1992)

    Article  Google Scholar 

  46. 46.

    Glocker, Ch., Pfeiffer, F.: Complementarity problems in multibody systems with planar friction. Arch. Appl. Mech. 63(7), 452–463 (1993)

    MATH  Google Scholar 

  47. 47.

    Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5(2), 193–207 (1994)

    Google Scholar 

  48. 48.

    Glocker, Ch., Pfeiffer, F.: Multiple impacts with friction in rigid multibody systems. Nonlinear Dyn. 7(4), 471–497 (1995)

    MathSciNet  Article  Google Scholar 

  49. 49.

    Dias, J.P., Pereira, M.S.: Dynamics of flexible mechanical systems with contact-impact and plastic deformations. Nonlinear Dyn. 8(4), 491–512 (1995)

    Google Scholar 

  50. 50.

    Silva, M.P.T., Ambrósio, J.A.C., Pereira, M.S.: A multibody approach to the vehicle and occupant integrated simulation. Int. J. Crashworthiness 2(1), 73–90 (1996)

    Article  Google Scholar 

  51. 51.

    Wasfy, T.M., Noor, A.K.: Computational procedure for simulating the contact/impact response in flexible multibody systems. Comput. Methods Appl. Mech. Eng. 147(1–2), 153–166 (1997)

    MATH  Article  Google Scholar 

  52. 52.

    Ravn, P.: A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dyn. 2, 1–24 (1998)

    MATH  Article  Google Scholar 

  53. 53.

    Wösle, M., Pfeiffer, F.: Dynamics of multibody systems with unilateral constraints. Int. J. Bifurc. Chaos Appl. Sci. Eng. 9(3), 473–478 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  54. 54.

    Armero, F., Petöcz, E.: A new dissipative time-stepping algorithm for frictional contact problems: formulation and analysis. Comput. Methods Appl. Mech. Eng. 179, 151–178 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    Bauchau, O.A.: On the modeling of friction and rolling in flexible multi-body systems. Multibody Syst. Dyn. 3(3), 209–239 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  56. 56.

    Bauchau, O.A.: Analysis of flexible multibody systems with intermittent contacts. Multibody Syst. Dyn. 4(1), 23–54 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  57. 57.

    Lankarani, H.M.: A Poisson-based formulation for frictional impact analysis of multibody mechanical systems with open or closed kinematic chains. J. Mech. Des. 122(4), 489–497 (2000)

    Article  Google Scholar 

  58. 58.

    Chang, C.-C., Huston, R.L.: Collisions of multibody systems. Comput. Mech. 27(5), 436–444 (2001)

    MATH  Article  Google Scholar 

  59. 59.

    Chang, C.-C., Liu, C.Q., Huston, R.L.: Dynamics of multibody systems subjected to impulsive constraints. Multibody Syst. Dyn. 8, 161–184 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  60. 60.

    Leine, R.I., Glocker, Ch.: A set-valued force law for spatial Coulomb-Contensou friction. Eur. J. Mech. A, Solids 22(2), 193–216 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  61. 61.

    Gonthier, Y., McPhee, J., Lange, C., Piedbœuf, J.-C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11(3), 209–233 (2004)

    MATH  Article  Google Scholar 

  62. 62.

    Glocker, Ch.: Concepts for modeling impacts without friction. Acta Mech. 168(1–2), 1–19 (2004)

    MATH  Article  Google Scholar 

  63. 63.

    Glocker, Ch., Studer, C.: Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics. Multibody Syst. Dyn. 13(4), 447–463 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  64. 64.

    Payr, M., Glocker, Ch.: Oblique frictional impact of a bar: analysis and comparison of different impact laws. Nonlinear Dyn. 41(4), 361–383 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  65. 65.

    Ebrahimi, S., Hippmann, G., Eberhard, P.: Extension of the polygonal contact model for flexible multibody systems. Int. J. Appl. Math. Mech. 1, 33–50 (2005)

    Google Scholar 

  66. 66.

    Förg, M., Pfeiffer, F., Ulbrich, H.: Simulation of unilateral constrained systems with many bodies. Multibody Syst. Dyn. 14(2), 137–154 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  67. 67.

    Pfeiffer, F.G., Foerg, M.O.: On the structure of multiple impact systems. Nonlinear Dyn. 42(2), 101–112 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  68. 68.

    Pfeiffer, F., Foerg, M., Ulbrich, H.: Numerical aspects of non-smooth multibody dynamics. Comput. Methods Appl. Mech. Eng. 195(50–51), 6891–6908 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  69. 69.

    Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Influence of the contact-impact force model on the dynamic response of multi-body systems. J. Multi-Body Dyn. 220(1), 21–34 (2006)

    Google Scholar 

  70. 70.

    Ebrahimi, S., Eberhard, P.: Frictional impact of planar deformable bodies. In: IUTAM Symposium on Multiscale Problems in Multibody System Contacts, pp. 23–32 (2007)

    Chapter  Google Scholar 

  71. 71.

    Ebrahimi, S., Eberhard, P.: Aspects of impact of planar deformable bodies as linear complementarity problems. Multidiscip. Model. Mater. Struct. 4(4), 331–344 (2008)

    Article  Google Scholar 

  72. 72.

    Bowling, A., Flickinger, D.M., Harmeyer, S.: Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 22, 27–45 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  73. 73.

    Flickinger, D.M., Bowling, A.: Simultaneous oblique impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 23, 249–261 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  74. 74.

    Bhalerao, K.D., Anderson, K.S.: Modeling intermittent contact for flexible multibody systems. Nonlinear Dyn. 60, 63–79 (2010)

    MATH  Article  Google Scholar 

  75. 75.

    Lopes, D.S., Silva, M.T., Ambrósio, J.A., Flores, P.: A mathematical framework for rigid contact detection between quadric and superquadric surfaces. Multibody Syst. Dyn. 24(3), 255–280 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  76. 76.

    Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24, 103–122 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  77. 77.

    Flores, P., Machado, M., Silva, M.T., Martins, J.M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25, 357–375 (2011)

    MATH  Article  Google Scholar 

  78. 78.

    Machado, M., Flores, P., Ambrosio, J., Completo, A.: Influence of the contact model on the dynamic response of the human knee joint. J. Multi-Body Dyn. 225(4), 344–358 (2011)

    Google Scholar 

  79. 79.

    Rodriguez, A., Bowling, A.: Solution to indeterminate multipoint impact with frictional contact using constraints. Multibody Syst. Dyn. 28, 313–330 (2012)

    MathSciNet  Article  Google Scholar 

  80. 80.

    Font-Llagunes, J.M., Barjau, A., Pàmies-Vilà, R., Kövecses, J.: Dynamic analysis of impact in swing-through crutch gait using impulsive and continuous contact models. Multibody Syst. Dyn. 28(3), 257–282 (2012)

    MathSciNet  Article  Google Scholar 

  81. 81.

    Boos, M., McPhee, J.: Volumetric modeling and experimental validation of normal contact dynamic forces. J. Comput. Nonlinear Dyn. 8(2), 021006 (2013)

    Article  Google Scholar 

  82. 82.

    Pereira, C., Ramalho, A., Ambrosio, J.: Applicability domain of internal cylindrical contact force models. Mech. Mach. Theory 78, 141–157 (2014)

    Article  Google Scholar 

  83. 83.

    Pereira, C., Ramalho, A., Ambrosio, J.: An enhanced cylindrical contact force model. Multibody Syst. Dyn. 35(3), 277–298 (2015)

    MATH  Article  Google Scholar 

  84. 84.

    Rodriguez, A., Bowling, A.: Study of Newton’s cradle using a new discrete approach. Multibody Syst. Dyn. 33, 61–92 (2015)

    MathSciNet  Article  Google Scholar 

  85. 85.

    Petersen, W., McPhee, J.: Experimental validation of a volumetric planetary rover wheel/soil interaction model. J. Comput. Nonlinear Dyn. 10(5), 051001 (2015)

    Article  Google Scholar 

  86. 86.

    Brown, P., McPhee, J.: A continuous velocity-based friction model for dynamics and control with physically meaningful parameters. J. Comput. Nonlinear Dyn. 11(5), 054502 (2016)

    Article  Google Scholar 

  87. 87.

    Masoudi, R., McPhee, J.: A novel micromechanical model of nonlinear compression hysteresis in compliant interfaces of multibody systems. Multibody Syst. Dyn. 37(3), 325–343 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  88. 88.

    Marra, M.A., Andersen, M.S., Damsgaard, M., Koopman, B.F.J.M., Janssen, D., Verdonschot, N.: Evaluation of a surrogate contact model in force-dependent kinematic simulations of total knee replacement. J. Biomech. Eng. 139(8), 4036605 (2017)

    Article  Google Scholar 

  89. 89.

    Thornton, C., Cummins, S.J., Cleary, P.W.: On elastic-plastic normal contact force models, with and without adhesion. Powder Technol. 315, 339–346 (2017)

    Article  Google Scholar 

  90. 90.

    Kudra, G., Awrejcewicz, J.: Application of a special class of smooth models of the resultant friction force and moment occurring on a circular contact area. Arch. Appl. Mech. 87(5), 817–828 (2017)

    Article  Google Scholar 

  91. 91.

    Chatterjee, A., Rodriguez, A., Bowling, A.: Analytic solution for planar indeterminate impact problems using an energy constraint. Multibody Syst. Dyn. 42, 347–379 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  92. 92.

    Brown, P., McPhee, J.: A 3D ellipsoidal volumetric foot-ground contact model for forward dynamics. Multibody Syst. Dyn. 42(4), 447–467 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  93. 93.

    Römer, U.J., Fidlin, A., Seemann, A.: Explicit analytical solutions for two-dimensional contact detection problems between almost arbitrary geometries and straight or circular counterparts. Mech. Mach. Theory 128, 205–224 (2018)

    Article  Google Scholar 

  94. 94.

    Xiang, D., Shen, Y., Wei, Y., You, M.: A comparative study of the dissipative contact force models for collision under external spring forces. J. Comput. Nonlinear Dyn. 13(10), 101009 (2018)

    Article  Google Scholar 

  95. 95.

    Carvalho, A.S., Martins, J.M.: Exact restitution and generalizations for the Hunt-Crossley contact model. Mech. Mach. Theory 139, 174–194 (2019)

    Article  Google Scholar 

  96. 96.

    Römer, U.J., Fidlin, A., Seemann, A.: The normal parameterization and its application to collision detection. Mech. Mach. Theory 151, 103906 (2020)

    Article  Google Scholar 

  97. 97.

    Safaeifar, H., Farshidianfar, A.: A new model of the contact force for the collision between two solid bodies. Multibody Syst. Dyn. 50(3), 233–257 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  98. 98.

    Wang, G., Liu, C.: Further investigation on improved viscoelastic contact force model extended based on Hertz’s law in multibody system. Mech. Mach. Theory 153, 103986 (2020)

    Article  Google Scholar 

  99. 99.

    Yu, J., Chu, J., Li, Y., Guan, L.: An improved compliant contact force model using a piecewise function for impact analysis in multibody dynamics. J. Multi-Body Dyn. 234(2), 424–432 (2020)

    Google Scholar 

  100. 100.

    Zhang, J., Li, W., Zhao, L., He, G.: A continuous contact force model for impact analysis in multibody dynamics. Mech. Mach. Theory 153, 103946 (2020)

    Article  Google Scholar 

  101. 101.

    Zhang, J., Huang, C., Zhao, L., Di, J., He, G., Li, W.: Continuous contact force model with an arbitrary damping term exponent: model and discussion. Mech. Syst. Signal Process. 159, 107808 (2021)

    Article  Google Scholar 

  102. 102.

    Becker, V., Kamlah, M.: A theoretical model for the normal contact force of two elastoplastic ellipsoidal bodies. J. Appl. Mech. 88(3), 031006 (2021)

    Article  Google Scholar 

  103. 103.

    Marhefka, D., Orin, D.: A compliant contact model with nonlinear damping for simulation of robotic systems. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 29(6), 566–572 (1999)

    Article  Google Scholar 

  104. 104.

    Verscheure, D., Sharf, I., Bruyninckx, H., Swevers, J., De Schutter, J.: Identification of contact parameters from stiff multi-point contact robotic operations. Int. J. Robot. Res. 29, 367–385 (2010)

    Article  Google Scholar 

  105. 105.

    Bi, S.-S., Zhou, X.-D., Marghitu, D.B.: Impact modelling and analysis of the compliant legged robots. J. Multi-Body Dyn. 226, 85–94 (2012)

    Google Scholar 

  106. 106.

    Qian, Z., Zhang, D., Jin, C.: A regularized approach for frictional impact dynamics of flexible multi-link manipulator arms considering the dynamic stiffening effect. Multibody Syst. Dyn. 43, 229–255 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  107. 107.

    Dong, H., Qiu, C., Prasad, D.K., Pan, Y., Dai, J., Chen, I-M.: Enabling grasp action: generalized quality evaluation of grasp stability via contact stiffness from contact mechanics insight. Mech. Mach. Theory 134, 625–644 (2019)

    Article  Google Scholar 

  108. 108.

    Chen, Z., Gao, F., Sun, Q., Tian, Y., Liu, J., Zhao, Y.: Ball-on-plate motion planning for six-parallel-legged robots walking on irregular terrains using pure haptic information. Mech. Mach. Theory 141, 136–150 (2019)

    Article  Google Scholar 

  109. 109.

    Liu, Y., Ben-Tzvi, P.: Dynamic modeling, analysis, and comparative study of a quadruped with bio-inspired robotic tails. Multibody Syst. Dyn. 51, 195–219 (2021)

    MathSciNet  MATH  Article  Google Scholar 

  110. 110.

    Shabana, A.A., Zaazaa, K.E., Escalona, J.L., Sany, J.R.: Development of elastic force model for wheel/rail contact problems. J. Sound Vib. 269(1–2), 295–325 (2004)

    Article  Google Scholar 

  111. 111.

    Malvezzi, M., Meli, E., Falomi, S., Rindi, A.: Determination of wheel–rail contact points with semianalytic methods. Multibody Syst. Dyn. 20, 327–358 (2008)

    MATH  Article  Google Scholar 

  112. 112.

    Sugiyama, H., Sekiguchi, T., Matsumura, R., Yamashita, S., Suda, Y.: Wheel/rail contact dynamics in turnout negotiations with combined nodal and non-conformal contact approach. Multibody Syst. Dyn. 27, 55–74 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  113. 113.

    Liu, B., Bruni, S., Vollebregt, E.: A non-Hertzian method for solving wheel–rail normal contact problem taking into account the effect of yaw. Veh. Syst. Dyn. 54(9), 1226–1246 (2016)

    Article  Google Scholar 

  114. 114.

    Piotrowski, J., Liu, B., Bruni, S.: The Kalker book of tables for non-Hertzian contact of wheel and rail. Veh. Syst. Dyn. 55(6), 875–901 (2017)

    Article  Google Scholar 

  115. 115.

    Sun, Y., Zhai, W., Guo, Y.: A robust non-Hertzian contact method for wheel–rail normal contact analysis. Veh. Syst. Dyn. 56(12), 1899–1921 (2018)

    Article  Google Scholar 

  116. 116.

    Fang, W., Bruni, S.: A time domain model for the study of high frequency 3D wheelset–track interaction with non-Hertzian contact. Multibody Syst. Dyn. 46, 229–255 (2019)

    MathSciNet  Article  Google Scholar 

  117. 117.

    Song, Y., Antunes, P., Pombo, J., Liu, Z.: A methodology to study high-speed pantograph-catenary interaction with realistic contact wire irregularities. Mech. Mach. Theory 152, 103940 (2020)

    Article  Google Scholar 

  118. 118.

    Aceituno, J.F., Urda, P., Briales, E., Escalona, J.L.: Analysis of the two-point wheel-rail contact scenario using the knife-edge-equivalent contact constraint method. Mech. Mach. Theory 148, 103803 (2020)

    Article  Google Scholar 

  119. 119.

    Magalhães, H., Marques, F., Liu, B., Antunes, P., Pombo, J., Flores, P., Ambrósio, J., Piotrowski, J., Bruni, S.: Implementation of a non-Hertzian contact model for railway dynamic application. Multibody Syst. Dyn. 48(1), 41–78 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  120. 120.

    Marques, F., Magalhães, H., Pombo, J., Ambrósio, J., Flores, P.: A three-dimensional approach for contact detection between realistic wheel and rail surfaces for improved railway dynamic analysis. Mech. Mach. Theory 149, 103825 (2020)

    Article  Google Scholar 

  121. 121.

    Vollebregt, E.: Detailed wheel/rail geometry processing with the conformal contact approach. Multibody Syst. Dyn. 52, 135–167 (2021)

    MathSciNet  MATH  Article  Google Scholar 

  122. 122.

    Vollebregt, E.A.H.: Detailed wheel/rail geometry processing using the planar contact approach. Veh. Syst. Dyn. (2020). https://doi.org/10.1080/00423114.2020.1853180

    Article  MATH  Google Scholar 

  123. 123.

    Nikravesh, P.E., Ambrosio, J.A.C.: Rollover simulation and crashworthiness analysis of trucks. Forensic Eng. 2(1–2), 257–258 (1990)

    Google Scholar 

  124. 124.

    Ambrosio, J.A.C., Nikravesh, P.E., Pereira, M.S.: Crashworthiness analysis of a truck. Math. Comput. Model. 14(C), 959–964 (1990)

    Article  Google Scholar 

  125. 125.

    Dias, J.P., Pereira, M.S.: Design for vehicle crashworthiness using multibody dynamics. Int. J. Veh. Des. 15(6), 563–577 (1994)

    Google Scholar 

  126. 126.

    Ramalingam, V.K., Lankarani, H.M.: Analysis of impact on soft soil and its application to aircraft crashworthiness. Int. J. Crashworthiness 7(1), 57–66 (2002)

    Article  Google Scholar 

  127. 127.

    Pereira, M.S., Ambrósio, J.A.C., Dias, J.P.: Crashworthiness analysis and design using rigid-flexible multibody dynamics with application to train vehicles. Int. J. Numer. Methods Eng. 40(4), 655–687 (1997)

    MATH  Article  Google Scholar 

  128. 128.

    Sousa, L., Veríssimo, P., Ambrósio, J.: Development of generic multibody road vehicle models for crashworthiness. Multibody Syst. Dyn. 19, 133–158 (2008)

    MATH  Article  Google Scholar 

  129. 129.

    Ambrósio, J., Verissimo, P.: Improved bushing models for general multibody systems and vehicle dynamics. Multibody Syst. Dyn. 22, 341 (2009)

    MATH  Article  Google Scholar 

  130. 130.

    Tay, Y.Y., Bhonge, P.S., Lankarani, H.M.: Crash simulations of aircraft fuselage section in water impact and comparison with solid surface impact. Int. J. Crashworthiness 20(5), 464–482 (2015)

    Article  Google Scholar 

  131. 131.

    Guida, M., Manzoni, A., Zuppardi, A., Caputo, F., Marulo, F., De Luca, A.: Development of a multibody system for crashworthiness certification of aircraft seat. Multibody Syst. Dyn. 44, 191–221 (2018)

    MathSciNet  Article  Google Scholar 

  132. 132.

    Bruni, S., Meijaard, J.P., Rill, G., Schwab, A.L.: State-of-the-art and challenges of railway and road vehicle dynamics with multibody dynamics approaches. Multibody Syst. Dyn. 49, 1–32 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  133. 133.

    Tay, Y.Y., Flores, P., Lankarani, H.: Crashworthiness analysis of an aircraft fuselage section with an auxiliary fuel tank using a hybrid multibody/plastic hinge approach. Int. J. Crashworthiness 25(1), 95–105 (2020)

    Article  Google Scholar 

  134. 134.

    Silva, P.C., Silva, M.T., Martins, J.M.: Evaluation of the contact forces developed in the lower limb/orthosis interface for comfort design. Multibody Syst. Dyn. 24, 367–388 (2010)

    MATH  Article  Google Scholar 

  135. 135.

    Guess, T.M.: Forward dynamics simulation using a natural knee with menisci in the multibody framework. Multibody Syst. Dyn. 28, 37–53 (2012)

    Article  Google Scholar 

  136. 136.

    Modenese, L., Phillips, A.T.M.: Prediction of hip contact forces and muscle activations during walking at different speeds. Multibody Syst. Dyn. 28, 157–168 (2012)

    Article  Google Scholar 

  137. 137.

    Gerus, P., Sartori, M., Besier, T.F., Fregly, B.J., Delp, S.L., Banks, S.A., Pandy, M.G., D’Lima, D.D., Lloyd, D.G.: Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J. Biomech. 46(16), 2778–2786 (2013)

    Article  Google Scholar 

  138. 138.

    Pàmies-Vilà, R., Font-Llagunes, J.M., Lugrís, U., Cuadrado, J.: Parameter identification method for a three-dimensional foot–ground contact model. Mech. Mach. Theory 75, 107–116 (2014)

    Article  Google Scholar 

  139. 139.

    Askari, E., Flores, P., Dabirrahmani, D., Appleyard, R.: Nonlinear vibration and dynamics of ceramic on ceramic artificial hip joints: a spatial multibody modelling. Nonlinear Dyn. 76(2), 1365–1377 (2014)

    MathSciNet  Article  Google Scholar 

  140. 140.

    Askari, E., Flores, P., Dabirrahmani, D., Appleyard, R.: Dynamic modeling and analysis of wear in spatial hard-on-hard couple hip replacements using multibody systems methodologies. Nonlinear Dyn. 82(1–2), 1039–1058 (2015)

    MathSciNet  Article  Google Scholar 

  141. 141.

    Askari, E., Flores, P., Dabirrahmani, D., Appleyard, R.: A computational analysis of squeaking hip prostheses. J. Comput. Nonlinear Dyn. 10(2), 024502 (2015)

    Article  Google Scholar 

  142. 142.

    Shourijeh, M.S., McPhee, J.: Foot-ground contact modeling within human gait simulations: from Kelvin–Voigt to hyper-volumetric models. Multibody Syst. Dyn. 35, 393–407 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  143. 143.

    Costa, J., Peixoto, J., Moreira, P., Souto, A.P., Flores, P., Lankarani, H.M.: Influence of the hip joint modeling approaches on the kinematics of human gait. J. Tribol. 138(3), 031201 (2016)

    Article  Google Scholar 

  144. 144.

    Moissenet, F., Chèze, L., Dumas, R.: Individual muscle contributions to ground reaction and to joint contact, ligament and bone forces during normal gait. Multibody Syst. Dyn. 40, 193–211 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  145. 145.

    Ezati, M., Ghannadi, B., McPhee, J.: A review of simulation methods for human movement dynamics with emphasis on gait. Multibody Syst. Dyn. 47, 265–292 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  146. 146.

    Ezati, M., Brown, P., Ghannadi, B., McPhee, J.: Comparison of direct collocation optimal control to trajectory optimization for parameter identification of an ellipsoidal foot-ground contact model. Multibody Syst. Dyn. 49, 71–93 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  147. 147.

    Mouzo, F., Michaud, F., Lugris, U., Cuadrado, J.: Leg-orthosis contact force estimation from gait analysis. Mech. Mach. Theory 148, 103800 (2020)

    Article  Google Scholar 

  148. 148.

    Liu, C., Zhang, K., Yang, L.: Compliance contact model of cylindrical joints with clearances. Acta Mech. Sin./Lìxué Xuébào 21(5), 451–458 (2005)

    MATH  Article  Google Scholar 

  149. 149.

    Liu, C.-S., Zhang, K., Yang, L.: Normal force-displacement relationship of spherical joints with clearances. J. Comput. Nonlinear Dyn. 1(2), 160–167 (2006)

    Article  Google Scholar 

  150. 150.

    Liu, C.-S., Zhang, K., Yang, R.: The FEM analysis and approximate model for cylindrical joints with clearances. Mech. Mach. Theory 42(2), 183–197 (2007)

    MATH  Article  Google Scholar 

  151. 151.

    Marques, F., Isaac, F., Dourado, N., Souto, A.P., Flores, P., Lankarani, H.M.: A study on the dynamics of spatial mechanisms with frictional spherical clearance joints. J. Comput. Nonlinear Dyn. 12(5), 051013 (2017)

    Article  Google Scholar 

  152. 152.

    Akhadkar, N., Acary, V., Brogliato, B.: Multibody systems with 3D revolute joints with clearances: an industrial case study with an experimental validation. Multibody Syst. Dyn. 42, 249–282 (2018)

    MATH  Article  Google Scholar 

  153. 153.

    Ambrósio, J., Pombo, J.: A unified formulation for mechanical joints with and without clearances/bushings and/or stops in the framework of multibody systems. Multibody Syst. Dyn. 42, 317–345 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  154. 154.

    Erkaya, S.: Experimental investigation of flexible connection and clearance joint effects on the vibration responses of mechanisms. Mech. Mach. Theory 121, 515–529 (2018)

    Article  Google Scholar 

  155. 155.

    Chen, X., Jiang, S., Wang, S., Deng, Y.: Dynamics analysis of planar multi-DOF mechanism with multiple revolute clearances and chaos identification of revolute clearance joints. Multibody Syst. Dyn. 47, 317–345 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  156. 156.

    Erkaya, S.: Determining power consumption using neural model in multibody systems with clearance and flexible joints. Multibody Syst. Dyn. 47, 165–181 (2019)

    MATH  Article  Google Scholar 

  157. 157.

    Isaac, F., Marques, F., Dourado, N., Flores, P.: A finite element model of a 3D dry revolute joint incorporated in a multibody dynamic analysis. Multibody Syst. Dyn. 45, 293–313 (2019)

    MathSciNet  Article  Google Scholar 

  158. 158.

    Guo, J., Randall, R.B., Borghesani, P., Smith, W.A., Haneef, M.D., Peng, Z.: A study on the effects of piston secondary motion in conjunction with clearance joints. Mech. Mach. Theory 149, 103824 (2020)

    Article  Google Scholar 

  159. 159.

    Cirelli, M., Valentini, P.P., Pennestrì, E.: A study of the non-linear dynamic response of spur gear using a multibody contact based model with flexible teeth. J. Sound Vib. 445, 148–167 (2019)

    Article  Google Scholar 

  160. 160.

    Marques, F., Roupa, I., Silva, M.T., Flores, P., Lankarani, H.M.: Examination and comparison of different methods to model closed loop kinematic chains using Lagrangian formulation with cut joint, clearance joint constraint and elastic joint approaches. Mech. Mach. Theory 160, 104294 (2021)

    Article  Google Scholar 

  161. 161.

    Ohno, M., Takeda, Y.: Design of target trajectories for the detection of joint clearances in parallel robot based on the actuation torque measurement. Mech. Mach. Theory 155, 104081 (2021)

    Article  Google Scholar 

  162. 162.

    Vivet, M., Tamarozzi, T., Desmet, W., Mundo, D.: On the modelling of gear alignment errors in the tooth contact analysis of spiral bevel gears. Mech. Mach. Theory 155, 104065 (2021)

    Article  Google Scholar 

  163. 163.

    Marques, P.M.T., Marafona, J.D.M., Martins, R.C., Seabra, J.H.O.: A continuous analytical solution for the load sharing and friction torque of involute spur and helical gears considering a non-uniform line stiffness and line load. Mech. Mach. Theory 161, 104320 (2021)

    Article  Google Scholar 

  164. 164.

    Wu, X., Sun, Y., Wang, Y., Chen, Y.: Correlation dimension and bifurcation analysis for the planar slider-crank mechanism with multiple clearance joints. Multibody Syst. Dyn. 52, 95–116 (2021)

    MathSciNet  MATH  Article  Google Scholar 

  165. 165.

    Kuwabara, G., Kono, K.: Restitution coefficient in a collision between two spheres. Jpn. J. Appl. Phys. 26(8), 1230–1233 (1987)

    Article  Google Scholar 

  166. 166.

    Ramírez, R., Pöschel, T., Brilliantov, N.V., Schwager, T.: Coefficient of restitution of colliding viscoelastic spheres. Phys. Rev. E 60(4), 4465–4472 (1999)

    Article  Google Scholar 

  167. 167.

    Renouf, M., Dubois, F., Alart, P.: A parallel version of the nonsmooth contact dynamics algorithm applied to the simulation of granular media. J. Comput. Appl. Math. 168(1–2), 375–382 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  168. 168.

    Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. I. Theoretical framework. Proc. R. Soc. A, Math. Phys. Eng. Sci. 464(2100), 3193–3211 (2008)

    MathSciNet  MATH  Google Scholar 

  169. 169.

    Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. II. Numerical algorithm and simulation results. Proc. R. Soc. A, Math. Phys. Eng. Sci. 465(2101), 1–23 (2009)

    MathSciNet  MATH  Google Scholar 

  170. 170.

    Mazhar, H., Heyn, T., Negrut, D.: A scalable parallel method for large collision detection problems. Multibody Syst. Dyn. 26, 37–55 (2011)

    MATH  Article  Google Scholar 

  171. 171.

    Tasora, A., Anitescu, M., Negrini, S., Negrut, D.: A compliant visco-plastic particle contact model based on differential variational inequalities. Int. J. Non-Linear Mech. 53, 2–12 (2013)

    Article  Google Scholar 

  172. 172.

    Goldobin, D.S., Susloparov, E.A., Pimenova, A.V., Brilliantov, N.V.: Collision of viscoelastic bodies: rigorous derivation of dissipative force. Eur. Phys. J. E 38(6), 55 (2015)

    Article  Google Scholar 

  173. 173.

    Melanz, D., Jayakumar, P., Negrut, D.: Experimental validation of a differential variational inequality-based approach for handling friction and contact in vehicle/granular-terrain interaction. J. Terramech. 65, 1–13 (2016)

    Article  Google Scholar 

  174. 174.

    Zheng, Z., Zang, M., Chen, S., Zeng, H.: A GPU-based DEM-FEM computational framework for tire-sand interaction simulations. Comput. Struct. 15, 74–92 (2018)

    Article  Google Scholar 

  175. 175.

    Pazouki, A., Kwarta, M., Williams, K., Likos, W., Serban, R., Jayakumar, P., Negrut, D.: Compliant contact versus rigid contact: a comparison in the context of granular dynamics. Phys. Rev. E 96(4), 042905 (2017)

    Article  Google Scholar 

  176. 176.

    Krull, F., Hesse, R., Breuninger, P., Antonyuk, S.: Impact behaviour of microparticles with microstructured surfaces: experimental study and DEM simulation. Chem. Eng. Res. Des. 135, 175–184 (2018)

    Article  Google Scholar 

  177. 177.

    Gagnon, L., Morandini, M., Ghiringhelli, G.L.: A review of particle damping modeling and testing. J. Sound Vib. 459, 114865 (2019)

    Article  Google Scholar 

  178. 178.

    Jian, B., Hu, G.M., Fang, Z.Q., Zhou, H.J., Xia, R.: A normal contact force approach for viscoelastic spheres of the same material. Adv. Powder Technol. 350, 51–61 (2019)

    Article  Google Scholar 

  179. 179.

    Jian, B., Hu, G.M., Fang, Z.Q., Zhou, H.J., Xia, R.: Comparative behavior of damping terms of viscoelastic contact force models with consideration on relaxation time. Adv. Powder Technol. 356, 735–749 (2019)

    Article  Google Scholar 

  180. 180.

    Serban, R., Negrut, D., Recuero, A., Jayakumar, P.: An integrated framework for high-performance, high-fidelity simulation of ground vehicle-tyre-terrain interaction. Int. J. Veh. Perform. 5(3), 233–259 (2019)

    Article  Google Scholar 

  181. 181.

    Rakhsha, M., Kelly, C., Olsen, N., Serban, R., Negrut, D.: Multibody dynamics versus fluid dynamics: two perspectives on the dynamics of granular flows. J. Comput. Nonlinear Dyn. 15(9), 091009 (2020)

    Article  Google Scholar 

  182. 182.

    Bodrova, A.S., Osinsky, A., Brilliantov, N.V.: Temperature distribution in driven granular mixtures does not depend on mechanism of energy dissipation. Sci. Rep. 10(1), 693 (2020)

    Article  Google Scholar 

  183. 183.

    Guo, J., Li, W., Ding, L., Guo, T., Gao, H., Huang, B., Deng, Z.: High–slip wheel–terrain contact modelling for grouser–wheeled planetary rovers traversing on sandy terrains. Mech. Mach. Theory 153, 104032 (2020)

    Article  Google Scholar 

  184. 184.

    Guo, J., Li, W., Gao, H., Ding, L., Guo, T., Huang, B., Deng, Z.: In-situ wheel sinkage estimation under high slip conditions for grouser-wheeled planetary rovers: another immobility index. Mech. Mach. Theory 158, 104243 (2021)

    Article  Google Scholar 

  185. 185.

    James, G., Vorotnikov, K., Brogliato, B.: Kuwabara-Kono numerical dissipation: a new method to simulate granular matter. IMA J. Appl. Math., Inst. Math. Appl. 85(1), 27–66 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  186. 186.

    Pfeiffer, F.: Mechanische Systeme mit unstetigen übergängen. Ing.-Arch. 54(3), 232–240 (1984)

    MATH  Article  Google Scholar 

  187. 187.

    Glocker, C.: Dynamik von Starrkörpersystemen mit Reibung und Stößen. PhD Dissertation, VDI-Fortschrittberichte Mechanik/Bruchmechanik, Reine 18, Nr. 182. VDI-Verlag, Düsseldorf, Germany (1995)

  188. 188.

    Turner, J.D.: On the simulation of discontinuous functions. J. Appl. Mech. 68(5), 751–757 (2001)

    MATH  Article  Google Scholar 

  189. 189.

    Leine, R.I., Glocker, C., Van Campen, D.H.: Nonlinear dynamics of the woodpecker toy. In: Proceedings of the ASME Design Engineering Technical Conference, vol. 6C, pp. 2629–2637 (2001)

    Google Scholar 

  190. 190.

    Leine, R.I., Van Campen, D.H., Glocker, Ch.: Nonlinear dynamics and modeling of various wooden toys with impact and friction. J. Vib. Control 9(1–2), 25–78 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  191. 191.

    Slavič, J., Boltežar, M.: Non-linearity and non-smoothness in multi-body dynamics: application to woodpecker toy. J. Mech. Eng. Sci. 220(3), 285–296 (2006)

    Article  Google Scholar 

  192. 192.

    Studer, C., Leine, R.I., Glocker, Ch.: Step size adjustment and extrapolation for time-stepping schemes in non-smooth dynamics. Int. J. Numer. Methods Eng. 76(11), 1747–1781 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  193. 193.

    Flores, P.: Contact-impact analysis in multibody systems based on the nonsmooth dynamics approach. Post-Doctoral Report, ETH-Zurich Switzerland (2009)

  194. 194.

    Duan, W., Wang, Q., Wang, T.: Simulation research of a passive dynamic walker with round feet based on non-smooth method. Lixue Xuebao/Chin. J. Theoret. Appl. Mech. 43(4), 765–774 (2011)

    Google Scholar 

  195. 195.

    Zhang, K.Y., Xu, Y.: Passive movement modeling of a woodpecker robot. Appl. Mech. Mater. 415, 23–25 (2013)

    Article  Google Scholar 

  196. 196.

    Steinkamp, P.: A statically unstable passive Hopper: design evolution. J. Mech. Robot. 9(1), 011016 (2017)

    Article  Google Scholar 

  197. 197.

    Zheng, X.-D., Wang, Q.: LCP method for a planar passive dynamic walker based on an event-driven scheme. Acta Mech. Sin. 34, 578–588 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  198. 198.

    Corral, E., García, M.J.G., Castejon, C., Meneses, J., Gismeros, R.: Dynamic modeling of the dissipative contact and friction forces of a passive biped-walking robot. Appl. Sci. 10(7), 2342 (2020)

    Article  Google Scholar 

  199. 199.

    Galvez, J., Cosimo, A., Cavalieri, F.J., Cardona, A., Brüls, O.: A general purpose formulation for nonsmooth dynamics including large rotations: application to the woodpecker toy. J. Comput. Nonlinear Dyn. 16(3), 031001 (2021)

    Article  Google Scholar 

  200. 200.

    Jankowski, R.: Non-linear viscoelastic modelling of earthquake-induced structural pounding. Earthq. Eng. Struct. Dyn. 34(6), 595–611 (2005)

    Article  Google Scholar 

  201. 201.

    Jankowski, R.: Analytical expression between the impact damping ratio and the coefficient of restitution in the non-linear viscoelastic model of structural pounding. Earthq. Eng. Struct. Dyn. 35(4), 517–524 (2006)

    Article  Google Scholar 

  202. 202.

    Muthukumar, S., DesRoches, R.: A hertz contact model with non-linear damping for pounding simulation. Earthq. Eng. Struct. Dyn. 35(7), 811–828 (2006)

    Article  Google Scholar 

  203. 203.

    Peña, F., Prieto, F., Lourenço, P.B., Campos Costa, A., Lemos, J.V.: On the dynamics of rocking motion of single rigid-block structures. Earthq. Eng. Struct. Dyn. 36(15), 2383–2399 (2007)

    Article  Google Scholar 

  204. 204.

    DeJong, M.J., De Lorenzis, L., Adams, S., Ochsendorf, J.A.: Rocking stability of masonry arches in seismic regions. Earthq. Spectra 24(4), 847–865 (2008)

    Article  Google Scholar 

  205. 205.

    Mahmoud, S., Chen, X., Jankowski, R.: Structural pounding models with Hertz spring and nonlinear damper. J. Appl. Sci. 8(10), 1850–1858 (2008)

    Article  Google Scholar 

  206. 206.

    Ye, K., Li, L., Zhu, H.: A modified Kelvin impact model for pounding simulation of base-isolated building with adjacent structures. Earthq. Eng. Eng. Vib. 8(3), 433–446 (2009)

    Article  Google Scholar 

  207. 207.

    Ye, K., Li, L., Zhu, H.: A note on the Hertz contact model with nonlinear damping for pounding simulation. Earthq. Eng. Struct. Dyn. 38(9), 1135–1142 (2009)

    Article  Google Scholar 

  208. 208.

    Ajibose, O.K., Wiercigroch, M., Pavlovskaia, E., Akisanya, A.R.: Global and local dynamics of drifting oscillator for different contact force models. Int. J. Non-Linear Mech. 45(9), 850–858 (2010)

    Article  Google Scholar 

  209. 209.

    Dimitrakopoulos, E.G.: Analysis of a frictional oblique impact observed in skew bridges. Nonlinear Dyn. 60(4), 575–595 (2010)

    MATH  Article  Google Scholar 

  210. 210.

    Dimitrakopoulos, E.G., Makris, N., Kappos, A.J.: Dimensional analysis of the earthquake-induced pounding between inelastic structures. Bull. Earthq. Eng. 9(2), 561–579 (2011)

    Article  Google Scholar 

  211. 211.

    Banerjee, A., Chanda, A., Das, R.: Oblique frictional unilateral contacts perceived in curved bridges. Nonlinear Dyn. 85(4), 2207–2231 (2016)

    Article  Google Scholar 

  212. 212.

    Banerjee, A., Chanda, A., Das, R.: Seismic analysis of a curved bridge considering deck-abutment pounding interaction: an analytical investigation on the post-impact response. Earthq. Eng. Struct. Dyn. 46(2), 267–290 (2017)

    Article  Google Scholar 

  213. 213.

    Shi, Z., Dimitrakopoulos, E.G.: Nonsmooth dynamics prediction of measured bridge response involving deck-abutment pounding. Earthq. Eng. Struct. Dyn. 46(9), 1431–1452 (2017)

    Article  Google Scholar 

  214. 214.

    Shi, Z., Dimitrakopoulos, E.G.: Comparative evaluation of two simulation approaches of deck-abutment pounding in bridges. Eng. Struct. 148, 541–551 (2017)

    Article  Google Scholar 

  215. 215.

    Beatini, V., Royer-Carfagni, G., Tasora, A.: The role of frictional contact of constituent blocks on the stability of masonry domes. Proc. R. Soc. A, Math. Phys. Eng. Sci. 474(2209), 20170740 (2018)

    MATH  Google Scholar 

  216. 216.

    Beatini, V., Royer-Carfagni, G., Tasora, A.: A non-smooth-contact-dynamics analysis of Brunelleschi’s cupola: an octagonal vault or a circular dome? Meccanica 54(3), 525–547 (2019)

    MathSciNet  Article  Google Scholar 

  217. 217.

    Öztürk, Ş., Bayraktar, A., Hökelekli, E., Ashour, A.: Nonlinear structural performance of a historical brick masonry inverted dome. Int. J.l Archit. Herit. 14(8), 1161–1179 (2020)

    Article  Google Scholar 

  218. 218.

    Miari, M., Choong, K.K., Jankowski, R.: Seismic pounding between bridge segments: a state-of-the-art review. Arch. Comput. Methods Eng. 28(2), 495–504 (2021)

    Article  Google Scholar 

  219. 219.

    Stulov, A.: Hysteretic model of the grand piano hammer felt. J. Acoust. Soc. Am. 97, 2577 (1995)

    Article  Google Scholar 

  220. 220.

    Avanzini, F., Rocchesso, D.: Modeling collision sounds: non-linear contact force. In: Proceedings of Digital Audio Effects Conference, pp. 61–66 (2001)

    Google Scholar 

  221. 221.

    Avanzini, F., Rath, M., Rocchesso, D.: Physically-based audio rendering of contact. In: Proceedings - 2002 IEEE International Conference on Multimedia and Expo, ICME 2002, vol. 2, pp. 445–448 (2002), 1035636

    Google Scholar 

  222. 222.

    Avanzini, F., Serafin, S., Rocchesso, D.: Interactive simulation of rigid body interaction with friction-induced sound generation. IEEE Trans. Speech Audio Process. 13(5), 1073–1080 (2005)

    Article  Google Scholar 

  223. 223.

    Avanzini, F., Crosato, P.: Haptic-auditory rendering and perception of contact stiffness. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). LNCS, vol. 4129, pp. 24–35 (2006)

    Google Scholar 

  224. 224.

    Avanzini, F., Crosato, P.: Integrating physically based sound models in a multimodal rendering architecture. Comput. Animat. Virtual Worlds 17(3–4), 411–419 (2006)

    Article  Google Scholar 

  225. 225.

    Papetti, S., Avanzini, F., Rocchesso, D.: Numerical methods for a nonlinear impact model: a comparative study with closed-form corrections. IEEE Trans. Audio Speech Lang. Process. 19(7), 5719157 (2011)

    Article  Google Scholar 

  226. 226.

    Evangelista, G.: Physical model of the slide guitar: an approach based on contact forces. In: 132nd Audio Engineering Society Convention, pp. 451–460 (2012)

    Google Scholar 

  227. 227.

    Masoudi, R., Birkett, S., McPhee, J.: A mechanistic multibody model for simulating the dynamics of a vertical piano action. J. Comput. Nonlinear Dyn. 9(3), 061004 (2014)

    Google Scholar 

  228. 228.

    Masoudi, R., Birkett, S.: Experimental validation of a mechanistic multibody model of a vertical piano action. J. Comput. Nonlinear Dyn. 10(6), 061004 (2015)

    Article  Google Scholar 

  229. 229.

    Bokiau, B., Ceulemans, A.-E., Fisette, P.: Multibody dynamics as a tool for historical research. Multibody Syst. Dyn. 37(1), 15–28 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  230. 230.

    Turchet, L., Spagnol, S., Geronazzo, M., Avanzini, F.: Localization of self-generated synthetic footstep sounds on different walked-upon materials through headphones. Virtual Real. 20, 1–16 (2016)

    Article  Google Scholar 

  231. 231.

    Imran, M., Jeon, J.Y.: A robust rigid body interaction model for friction-induced sound synthesis. In: ICSV 2016 - 23rd International Congress on Sound and Vibration: From Ancient to Modern Acoustics (2016)

    Google Scholar 

  232. 232.

    Serafin, S., Geronazzo, M., Erkut, C., Nilsson, N.C., Nordahl, R.: Sonic interactions in virtual reality: state of the art, current challenges, and future directions. IEEE Comput. Graph. Appl. 38(2), 31–43 (2018)

    Article  Google Scholar 

  233. 233.

    Maunsbach, M., Serafin, S.: Non-linear contact sound synthesis for real-time audio-visual applications using modal textures. In: Proceedings of the Sound and Music Computing Conferences, pp. 431–436 (2019)

    Google Scholar 

  234. 234.

    Timmermansa, S., Ceulemans, A.-E., Fisette, P.: Upright and grand piano actions dynamic performances assessments using a multibody approach. Mech. Mach. Theory 160, 104296 (2021)

    Article  Google Scholar 

  235. 235.

    Dintwa, E., Zeebroeck, M.V., Tijskens, E., Ramon, H.: Determination of parameters of a tangential contact force model for viscoelastic spheroids (fruits) using a rheometer device. Biosyst. Eng. 91(3), 321–327 (2005)

    Article  Google Scholar 

  236. 236.

    Van Zeebroeck, M., Van linden, V., Ramon, H., De Baerdemaeker, J., Nicolaï, B.M., Tijskens, E.: Impact damage of apples during transport and handling. Postharvest Biol. Technol. 45(2), 157–167 (2007)

    Article  Google Scholar 

  237. 237.

    Van Zeebroeck, M., Van Linden, V., Darius, P., De Ketelaere, B., Ramon, H., Tijskens, E.: The effect of fruit properties on the bruise susceptibility of tomatoes. Postharvest Biol. Technol. 45(2), 168–175 (2007)

    Article  Google Scholar 

  238. 238.

    Kruggel-Emden, H., Wirtz, S., Scherer, V.: A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior. Chem. Eng. Sci. 63(6), 1523–1541 (2008)

    Article  Google Scholar 

  239. 239.

    Van Zeebroeck, M., Lombaert, G., Dintwa, E., Ramon, H., Degrande, G., Tijskens, E.: The simulation of the impact damage to fruit during the passage of a truck over a speed bump by means of the discrete element method. Biosyst. Eng. 101(1), 58–68 (2008)

    Article  Google Scholar 

  240. 240.

    Kruggel-Emden, H., Wirtz, S., Scherer, V.: Applicable contact force models for the discrete element method: the single particle perspective. J. Press. Vessel Technol. 131(2), 024001 (2009)

    Article  Google Scholar 

  241. 241.

    Ahmadi, E., Ghassemzadeh, H.R., Sadeghi, M., Moghaddam, M., ZarifNeshat, S.: The effect of impact and fruit properties on the bruising of peach. J. Food Eng. 97(1), 110–117 (2010)

    Article  Google Scholar 

  242. 242.

    Ahmadi, E., Ghassemzadeh, H.R., Sadeghi, M., Moghaddam, M., ZarifNeshat, S., Ettefagh, M.M.: Dynamic modeling of peach fruit during normal impact. J. Food Process. Eng. 35, 483–504 (2012)

    Article  Google Scholar 

  243. 243.

    Barikloo, H., Ahmadi, E.: Evaluation of impact effect and fruit properties on apple dynamic behavior. Aust. J. Crop Sci. 7(11), 1661–1669 (2013)

    Google Scholar 

  244. 244.

    Barikloo, H., Ahmadi, E.: Dynamic properties of golden delicious and red delicious apple under normal contact force models. J. Texture Stud. 44(6), 409–417 (2013)

    Article  Google Scholar 

  245. 245.

    Scheffler, O.C., Coetzee, C.J., Opara, U.L.: A discrete element model (DEM) for predicting apple damage during handling. Biosyst. Eng. 172, 29–48 (2018)

    Article  Google Scholar 

  246. 246.

    Wang, W., Zhang, S., Fu, H., Lu, H., Yang, Z.: Evaluation of litchi impact damage degree and damage susceptibility. Comput. Electron. Agric. 173, 105409 (2020)

    Article  Google Scholar 

  247. 247.

    Yi, D., Wei, J., Bo, X., Dean, Z., Lei, Z.: Compliant grasping control for apple harvesting robot end-effector. In: Proceedings - 2020 Chinese Automation Congress, CAC 2020, vol. 9326980, pp. 1208–1212 (2020)

    Chapter  Google Scholar 

  248. 248.

    Zhang, S., Wang, W., Wang, Y., Fu, H., Yang, Z.: Improved prediction of litchi impact characteristics with an energy dissipation model. Posthar. Biol. Technol. 176, 111508 (2021)

    Article  Google Scholar 

  249. 249.

    Erickson, D., Weber, M., Sharf, I.: Contact stiffness and damping estimation for robotic systems. Int. J. Robot. Res. 22(1), 41–57 (2003)

    Article  Google Scholar 

  250. 250.

    Carsten, H., Wriggers, P.: An explicit multi-body contact algorithm. Proc. Appl. Math. Mech. 3, 280–281 (2003)

    MATH  Article  Google Scholar 

  251. 251.

    Hippmann, G.: An algorithm for compliant contact between complexly shaped bodies. Multibody Syst. Dyn. 12, 345–362 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  252. 252.

    He, K., Dong, S., Zhou, Z.: Multigrid contact detection method. Phys. Rev. 75(3), 036710 (2007)

    Article  Google Scholar 

  253. 253.

    Wellmann, C., Lillie, C., Wriggers, P.: A contact detection algorithm for superellipsoids based on the common normal concept. Eng. Comput. 25(5), 432–442 (2008)

    MATH  Article  Google Scholar 

  254. 254.

    Portal, R.J.F., Dias, J.M.P., Sousa, L.A.G.: Contact detection between convex superquadric surfaces on multibody dynamics. In: Arczewski, K., Frączek, J., Wojtyra, M. (eds.) Proceedings of the Multibody Dynamics 2009, ECCOMAS Thematic Conference, Warsaw, Poland, 29 June - 2 July 2009, (2009), 14p.

    Google Scholar 

  255. 255.

    Flickinger, D.M., Williams, J., Trinkle, J.C.: What’s wrong with collision detection in multibody dynamics simulation? In: IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, May 6–10, 2013, pp. 959–964 (2013)

    Google Scholar 

  256. 256.

    Marques, F.: Frictional contacts in multibody dynamics. Master Dissertation, University of Minho, Portugal (2015)

  257. 257.

    Marques, F., Magalhães, H., Pombo, J., Ambrósio, J., Flores, P.: Contact detection approach between wheel and rail surfaces. Mech. Mach. Sci. 89, 405–412 (2020)

    Article  Google Scholar 

  258. 258.

    Sharf, I., Zhang, Y.: A contact force solution for non-colliding contact dynamics simulation. Multibody Syst. Dyn. 16, 263–290 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  259. 259.

    Choi, J., Ryu, H.S., Kim, C.W., Choi, J.H.: An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometry. Multibody Syst. Dyn. 23, 99 (2010)

    MATH  Article  Google Scholar 

  260. 260.

    Khadiv, M., Moosavian, S.A.A., Yousefi-Koma, A., Sadedel, M., Ehsani-Seresht, A., Mansouri, S.: Rigid vs compliant contact: an experimental study on biped walking. Multibody Syst. Dyn. 45, 379–401 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  261. 261.

    Dopico, D., Luaces, A., Saura, M., Cuadrado, J., Vilela, D.: Simulating the anchor lifting maneuver of ships using contact detection techniques and continuous contact force models. Multibody Syst. Dyn. 46, 147–179 (2019)

    MathSciNet  Article  Google Scholar 

  262. 262.

    Schulz, M., Mücke, R., Walser, H.-P.: Optimisation of mechanisms with collisions and unilateral constraints. Multibody Syst. Dyn. 1, 223–240 (1997)

    MATH  Article  Google Scholar 

  263. 263.

    Glocker, C.: Set-Valued Force Laws: Dynamics of Non-Smooth Systems. Lecture Notes in Applied Mechanics, vol. 1. Springer, Berlin (2001)

    MATH  Book  Google Scholar 

  264. 264.

    Blumentals, A., Brogliato, B., Bertails-Descoubes, F.: The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorial. Multibody Syst. Dyn. 38, 43–76 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  265. 265.

    Aghili, F.: Modeling and analysis of multiple impacts in multibody systems under unilateral and bilateral constrains based on linear projection operators. Multibody Syst. Dyn. 46, 41–62 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  266. 266.

    Peng, H., Song, N., Kan, Z.: A nonsmooth contact dynamic algorithm based on the symplectic method for multibody system analysis with unilateral constraints. Multibody Syst. Dyn. 49, 119–153 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  267. 267.

    Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37(10), 1213–1239 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  268. 268.

    Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: evolution of the Hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012)

    Article  Google Scholar 

  269. 269.

    Khulief, Y.A.: Modeling of impact in multibody systems: an overview. J. Comput. Nonlinear Dyn. 8(2), 021012 (2013)

    Article  Google Scholar 

  270. 270.

    Alves, J., Peixinho, N., Silva, M.T., Flores, P., Lankarani, H.M.: A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids. Mech. Mach. Theory 85, 172–188 (2015)

    Article  Google Scholar 

  271. 271.

    Banerjee, A., Chanda, A., Das, R.: Historical origin and recent development on normal directional impact models for rigid body contact simulation: a critical review. Arch. Comput. Methods Eng. 24(2), 397–422 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  272. 272.

    Skrinjar, L., Slavič, J., Boltežar, M.: A review of continuous contact-force models in multibody dynamics. Int. J. Mech. Sci. 145, 171–187 (2018)

    Article  Google Scholar 

  273. 273.

    Arailopoulos, A., Giagopoulos, D.: Nonlinear constitutive force model selection, update and uncertainty quantification for periodically sequential impact applications. Nonlinear Dyn. 99, 2623–2646 (2020)

    Article  Google Scholar 

  274. 274.

    Liu, Q., Liang, J., Ma, O.: A physics-based and data-driven hybrid modeling method for accurately simulating complex contact phenomenon. Multibody Syst. Dyn. 50(1), 97–117 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  275. 275.

    Corral, E., Moreno, R.G., García, M.J.G., Castejón, C.: Nonlinear phenomena of contact in multibody systems dynamics: a review. Nonlinear Dyn. 104, 1269–1295 (2021)

    Article  Google Scholar 

  276. 276.

    Liang, J., Fillmore, S., Ma, O.: An extended bristle friction force model with experimental validation. Mech. Mach. Theory 56, 123–137 (2012)

    Article  Google Scholar 

  277. 277.

    Pennestrì, E., Rossi, V., Salvini, P., Valentini, P.P.: Review and comparison of dry friction force models. Nonlinear Dyn. 83(4), 1785–1801 (2016)

    MATH  Article  Google Scholar 

  278. 278.

    Marques, F., Flores, P., Claro, J.C.P., Lankarani, H.M.: A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016)

    MathSciNet  Article  Google Scholar 

  279. 279.

    Marques, F., Flores, P., Claro, J.C.P., Lankarani, H.M.: Modeling and analysis of friction including rolling effects in multibody dynamics: a review. Multibody Syst. Dyn. 45(2), 223–244 (2019)

    MathSciNet  Article  Google Scholar 

  280. 280.

    Khan, Z.A., Chacko, V., Nazir, H.: A review of friction models in interacting joints for durability design. Friction 5(1), 1–22 (2017)

    Article  Google Scholar 

  281. 281.

    Pfeiffer, F.: On non-smooth dynamics. Meccanica 43(5), 533–554 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  282. 282.

    Pfeiffer, F.: On impacts with friction in engineering systems. Lect. Notes Appl. Comput. Mech. 44, 217–230 (2009)

    Article  Google Scholar 

  283. 283.

    Pfeiffer, F.: Energy considerations for frictional impacts. Arch. Appl. Mech. 80(1), 47–56 (2010)

    MATH  Article  Google Scholar 

  284. 284.

    Pfeiffer, F.: On non-smooth multibody dynamics. J. Multi-Body Dyn. 226(2), 147–177 (2012)

    Google Scholar 

  285. 285.

    Anitescu, M., Tasora, A.: An iterative approach for cone complementarity problems for nonsmooth dynamics. Comput. Optim. Appl. 47(2), 207–235 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  286. 286.

    Tasora, A., Anitescu, M.: A convex complementarity approach for simulating large granular flows. J. Comput. Nonlinear Dyn. 5(3), 1–10 (2010)

    MATH  Google Scholar 

  287. 287.

    Tasora, A., Anitescu, M.: A complementarity-based rolling friction model for rigid contacts. Meccanica 48(7), 1643–1659 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  288. 288.

    Negrut, D., Serban, R., Tasora, A.: Posing multibody dynamics with friction and contact as a differential complementarity problem. J. Comput. Nonlinear Dyn. 13(1), 014503 (2018)

    Article  Google Scholar 

  289. 289.

    Drenovac, V.: A method for the numerical integration of mechanical systems with unilateral constraints: study of impact in multibody systems. Math. Comput. Simul. 29(5), 413–420 (1987)

    MathSciNet  MATH  Article  Google Scholar 

  290. 290.

    Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics. Springer, Stuttgart (1988)

    MATH  Google Scholar 

  291. 291.

    Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin (2008)

    MATH  Book  Google Scholar 

  292. 292.

    Studer, C.: Numerics of Unilateral Contacts and Friction. Modeling and Numerical Time Integration in Non-Smooth Dynamics. Lecture Notes in Applied and Computational Mechanics, vol. 47. Springer, Berlin (2009)

    MATH  Book  Google Scholar 

  293. 293.

    Chen, Q.-Z., Acary, V., Virlez, G., Brüls, O.: A nonsmooth generalized- \(\alpha \) scheme for flexible multibody systems with unilateral constraints. Int. J. Numer. Methods Eng. 96(8), 487–511 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  294. 294.

    Flores, P., Lankarani, H.M.: Contact force models for multibody dynamics. In: Solid Mechanics and Its Applications. Springer, Berlin (2016)

    Google Scholar 

  295. 295.

    Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Kluwer Academic, Dordrecht (1990)

    MATH  Book  Google Scholar 

  296. 296.

    Jean, M., Moreau, J.J., Raous, M.: Contact Mechanics. Springer, New York (1995)

    Google Scholar 

  297. 297.

    Goryacheva, I.G.: Contact Mechanics in Tribology. Solid Mechanics and Its Applications. Springer, Berlin (1998)

    MATH  Book  Google Scholar 

  298. 298.

    Wriggers, P.: Computational Contact Mechanics. Wiley, Chichester (2002)

    MATH  Google Scholar 

  299. 299.

    Popov, V.L.: Contact Mechanics and Friction - Physical Principles and Applications. Springer, Berlin (2010)

    MATH  Book  Google Scholar 

  300. 300.

    Yastrebov, V.A.: Numerical Methods in Contact Mechanics. Wiley, New York (2013)

    MATH  Book  Google Scholar 

  301. 301.

    Rao, C.L., Narayanamurthy, V., Simha, K.R.Y.: Applied Impact Mechanics. Wiley, New York (2017)

    Google Scholar 

  302. 302.

    Stronge, W.J.: Impact Mechanics. Cambridge University Press Cambridge (2018)

    MATH  Book  Google Scholar 

  303. 303.

    Barber, J.R.: Contact Mechanics. Solid Mechanics and Its Applications. Springer, Berlin (2018)

    Google Scholar 

  304. 304.

    Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Constraints. Wiley, New York (1996)

    MATH  Book  Google Scholar 

  305. 305.

    Leine, R., Nijmeijer, H.: Dynamics and Bifurcations of Non-smooth Mechanical Systems. Springer, Berlin (2004)

    MATH  Book  Google Scholar 

  306. 306.

    Pfeiffer, F.: Mechanical System Dynamics. Springer, Berlin (2008)

    MATH  Book  Google Scholar 

  307. 307.

    Seifried, R., Schiehlen, W., Eberhard, P.: The role of the coefficient of restitution on impact problems in multi-body dynamics. J. Multi-Body Dyn. 224(3), 279–306 (2010)

    Google Scholar 

  308. 308.

    Stewart, D.E.: Rigid-body dynamics with friction and impact. J. Soc. Ind. Appl. Math. 42(1), 3–39 (2000)

    MathSciNet  MATH  Google Scholar 

  309. 309.

    Berger, E.J.: Friction modeling for dynamic system simulation. Appl. Mech. Rev. 55(6), 535–577 (2002)

    Article  Google Scholar 

  310. 310.

    Hutchings, I.M.: Leonardo da Vinci’s studies of friction. Wear 360–361, 51–66 (2016)

    Article  Google Scholar 

  311. 311.

    Amontons, G.: On the resistance originating in machines. In: Proceedings of the French Royal Academy of Sciences, pp. 206–222 (1699)

    Google Scholar 

  312. 312.

    Coulomb, C.A.: The theory of simple machines. Mem. Math. Acad. Sic. 10, 161–331 (1785)

    Google Scholar 

  313. 313.

    Euler, L.: Mem. Acad. Sci. Berl. 4, 122–148 (1750)

    Google Scholar 

  314. 314.

    Galilei, G.: Dialogues Concerning Two New Sciences. Macmillan, New York (1914), translated by, Crew, H. and de Salvio, A., reprinted in 1956, 1638

    MATH  Google Scholar 

  315. 315.

    Goldsmith, W.: Impact – The Theory and Physical Behavior of Colling Solids. Edward Around Lt.d, London (1960)

    Google Scholar 

  316. 316.

    Newton, I.: Philosophiae Naturalis Principia Mathematica. London (1687)

    MATH  Book  Google Scholar 

  317. 317.

    Stoianovici, D., Hurmuzlu, Y.: A critical study of the applicability of rigid-body collision theory. J. Appl. Mech. 63(2), 307–316 (1996)

    Article  Google Scholar 

  318. 318.

    Poisson, S.D.: Mechanics. Longmans, London (1817)

    MATH  Google Scholar 

  319. 319.

    Routh, E.L.: Dynamics of a System of Rigid Bodies. Macmillan, London (1860)

    MATH  Google Scholar 

  320. 320.

    Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge (1904)

    MATH  Google Scholar 

  321. 321.

    Painlevé, P.: Sur les lois de frottement de glissement. C.R. Acad. Sci. Paris 121, 112–115 (1905), 141, 401–405; 141, 546–552

    MATH  Google Scholar 

  322. 322.

    Elkaranshawy, H.A., Mohamed, K.T., Ashour, A.S., Alkomy, H.M.: Solving Painlevé paradox: (P-R) sliding robot case. Nonlinear Dyn. 88, 691–1705 (2017)

    Article  Google Scholar 

  323. 323.

    Fourier, J.B.: Mémoire sur la statique contenant la démonstration du principe des vitesses virtuelles et la théorie des moments. J. Éc. Polytech. 2, 20–60 (1798)

    Google Scholar 

  324. 324.

    Boltzmann, L.: Vorlesungen über die Prinzipe der Mechanik, Barth Leipzig (1922), T I, T II

    MATH  Google Scholar 

  325. 325.

    Young, T.: Treatise of Natural Philosophy. Oxford University Press, London (1807)

    Google Scholar 

  326. 326.

    Hertz, H.: On the contact of elastic solids. Z. Reine Angew. Math. 92, 156–171 (1881)

    MATH  Google Scholar 

  327. 327.

    Sears, J.E.: On the longitudinal impact of metal rods with rounded ends. Trans. Camb. Philos. Soc. 21, 515 (1908)

    Google Scholar 

  328. 328.

    Wittenberg, J.: Dynamics of Systems of Rigid Bodies, pp. 191–222. Teubner, Stuttgart (1977)

    Book  Google Scholar 

  329. 329.

    Wehage, R.A.: Generalized coordinate partitioning in dynamic analysis of mechanical systems. PhD Dissertation, The University of Iowa, USA (1980)

  330. 330.

    Khulief, Y.A., Haug, E.J., Shabana, A.A.: Dynamic analysis of large scale mechanical systems with intermittent motion. Technical Report No. CCAD-83-10, The University of Iowa, USA (1983)

  331. 331.

    Wehage, R.A., Haug, E.J.: Dynamic analysis of mechanical systems with intermittent motion. J. Mech. Des. 104, 778–784 (1982)

    Google Scholar 

  332. 332.

    Khulief, Y.A., Shabana, A.A.: Dynamic analysis of constrained system of rigid and flexible bodies with intermittent motion. J. Mech. Transm. Autom. Des. 108, 38–45 (1986)

    Article  Google Scholar 

  333. 333.

    Khulief, Y.A.: Restitution and friction in impact analysis of multibody systems executing plane motion. In: ASME Design Engineering Technical Conference, Columbus, OH, October 5.8 (1986), Paper No. 86-DET-50.

    Google Scholar 

  334. 334.

    Batlle, J.A., Condomines, A.B.: Rough collisions in multibody systems. Mech. Mach. Theory 26(6), 565–577 (1991)

    Article  Google Scholar 

  335. 335.

    Haug, E.J., Wu, S.C., Yang, S.M.: Dynamics of mechanical systems with Coulomb friction, stiction, impact and constraint addition-deletion – I theory. Mech. Mach. Theory 21(5), 401–406 (1986)

    Article  Google Scholar 

  336. 336.

    Wang, Y.-T., Kumar, V.: Simulation of mechanical systems with multiple frictional contacts. J. Mech. Des. 116(2), 571–580 (1994)

    Article  Google Scholar 

  337. 337.

    Anitescu, M., Cremer, J.F., Potra, F.A.: Formulating three-dimensional contact dynamics problems. Mech. Struct. Mach. 24(4), 405–437 (1996)

    MathSciNet  Article  Google Scholar 

  338. 338.

    Dubowsky, S., Freudenstein, F.: Dynamic analysis of mechanical systems with clearances - Part 1: formation of dynamic model. J. Eng. Ind. 93(1), 305–309 (1971)

    Article  Google Scholar 

  339. 339.

    Dubowsky, S., Freudenstein, F.: Dynamic analysis of mechanical systems with clearances - Part 2: dynamic response. J. Eng. Ind. 93(1), 310–316 (1971)

    Article  Google Scholar 

  340. 340.

    Kraus, P.R., Kumar, V.: Compliant contact models for rigid body collisions. IEEE Int. Conf. Robot. Autom. 2, 1382–1387 (1997)

    Google Scholar 

  341. 341.

    Kane, T.R.: A dynamic puzzle. Stanford Mechanics Alumni Club Newsletter, pp. 6 (1984)

  342. 342.

    Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985)

    Google Scholar 

  343. 343.

    Pereira, M.S., Nikravesh, P.E.: In: Impact Dynamics of Multibody Systems with Frictional Contact Using Joint Coordinates and Canonical Equations of Motion, NATO Advanced Science Institute on Computer-Aided Analysis of Rigid and Flexible Mechanical Systems, Troia, Portugal, June 27-July 9 (1994)

    Google Scholar 

  344. 344.

    Keller, J.B.: Impact with friction. J. Appl. Mech. 53, 1–4 (1986)

    MathSciNet  MATH  Article  Google Scholar 

  345. 345.

    Hurmuzlu, Y., Marghitu, D.B.: Rigid body collisions of planar kinematic chains with multiple contact points. Int. J. Robot. Res. 13, 82–89 (1994)

    Article  Google Scholar 

  346. 346.

    Zhang, Y., Sharf, I.: Rigid body impact modeling using integral formulation. J. Comput. Nonlinear Dyn. 2(1), 98–102 (2007)

    Article  Google Scholar 

  347. 347.

    Han, I., Gilmore, B.J.: Multi-body impact motion with friction – analysis, simulation, and experimental validation. J. Mech. Des. 115(3), 412–422 (1993)

    Article  Google Scholar 

  348. 348.

    Wang, Y., Mason, M.T.: Two-dimensional rigid-body collisions with friction. J. Appl. Mech. 59(3), 635–642 (1992)

    MATH  Article  Google Scholar 

  349. 349.

    Wang, Y., Mason, M.T.: Modeling impact dynamics for robotic operations. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 678–685 (1987)

    Google Scholar 

  350. 350.

    Smith, C.E.: Predicting rebounds using rigid-body dynamics. J. Appl. Mech. 58(3), 754–758 (1991)

    Article  Google Scholar 

  351. 351.

    Brach, R.M.: Formulation of rigid body impact problems using generalized coefficients. Int. J. Eng. Sci. 36(1), 61–71 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  352. 352.

    Pfeiffer, F.: Complementarity problems of stick-slip vibration. In: Sinha, S.C., Evan-Iwanowski, R.M. (eds.) Proceedings of the ASME 14th Biennial Conference on Mechanical Vibration and Noise, Albuquerque, New Mexico, September 19–22. Dynamics and Vibration of Time-Varying Systems and Structures, DE-vol. 56, pp. 43–50 (1993)

    Google Scholar 

  353. 353.

    Djerassi, S.: Collision with friction; Part A: Newton’s hypothesis. Multibody Syst. Dyn. 21, 37 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  354. 354.

    Djerassi, S.: Collision with friction; Part B: Poisson’s and Stornge’s hypotheses. Multibody Syst. Dyn. 21, 55 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  355. 355.

    Stronge, W.J.: Unraveling paradoxical theories for rigid body collisions. J. Appl. Mech. 58(4), 1049–1055 (1991)

    MATH  Article  Google Scholar 

  356. 356.

    Stronge, W.J.: Swerve during three-dimensional impact of rough rigid bodies. J. Appl. Mech. 61(3), 605–611 (1994)

    MATH  Article  Google Scholar 

  357. 357.

    Stronge, W.J.: Energetically consistent calculations for oblique impact in unbalanced systems with friction. J. Appl. Mech. 82(8), 081003 (2015)

    Article  Google Scholar 

  358. 358.

    Najafabadi, S.A.M., Kövecses, J., Angeles, J.: Energy analysis and decoupling in three-dimensional impacts of multibody systems. J. Appl. Mech. 74(5), 845–851 (2007)

    Article  Google Scholar 

  359. 359.

    Marghitu, D.B., Hurmuzlu, Y.: Three-dimensional rigid-body collisions with multiple contact points. J. Appl. Mech. 62(3), 725–732 (1995)

    MATH  Article  Google Scholar 

  360. 360.

    Chatterjee, A.: Rigid body collisions: some general considerations, new collision laws, and some experimental data. Ph.D. Thesis, Cornell University, USA (1997)

  361. 361.

    Batlle, J.A.: Rough collisions in multibody systems. Restitution rules and energetical consistency. IFAC Proc. 36(2), 245–250 (2003)

    MathSciNet  Article  Google Scholar 

  362. 362.

    Glocker, Ch.: Energetic consistency conditions for standard impacts; Part I: Newton-type inequality impact laws and Kane’s example. Multibody Syst. Dyn. 29, 77–117 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  363. 363.

    Glocker, Ch.: Energetic consistency conditions for standard impacts; Part II: Poisson-type inequality impact laws. Multibody Syst. Dyn. 32, 445–509 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  364. 364.

    Papastavridis, J.G.: Impulsive motion of ideally constrained mechanical systems via analytical dynamics. Int. J. Eng. Sci. 27(12), 1445–1461 (1989)

    MathSciNet  MATH  Article  Google Scholar 

  365. 365.

    Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications. CISM Courses and Lectures, vol. 302, pp. 1–82. Springer, Berlin (1988)

    Chapter  Google Scholar 

  366. 366.

    Johansson, L., Klarbring, A.: Study of frictional impact using a nonsmooth equations solver. J. Appl. Mech. 67(2), 267–273 (2000)

    MATH  Article  Google Scholar 

  367. 367.

    Flores, P., Leine, R., Glocker, C.: Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systems. Nonlinear Dyn. 69, 2117–2133 (2012)

    MathSciNet  Article  Google Scholar 

  368. 368.

    Ahmed, S., Lankarani, H.M., Pereira, M.F.O.S.: Frictional impact analysis in open-loop multibody mechanical systems. J. Mech. Des. 121(1), 119–127 (1999)

    Article  Google Scholar 

  369. 369.

    Stoenescu, E.D., Marghitu, D.B.: Dynamic analysis of a planar rigid-link mechanism with rotating slider joint and clearance. J. Sound Vib. 266(2), 394–404 (2003)

    Article  Google Scholar 

  370. 370.

    Pereira, C.M., Ramalho, A.L., Ambrósio, J.A.: A critical overview of internal and external cylinder contact force models. Nonlinear Dyn. 63, 681–697 (2011)

    Article  Google Scholar 

  371. 371.

    Pereira, C., Ambrósio, J., Ramalho, A.: Dynamics of chain drives using a generalized revolute clearance joint formulation. Mech. Mach. Theory 92, 64–85 (2015)

    Article  Google Scholar 

  372. 372.

    Uchida, T.K., Sherman, M.A., Delp, S.L.: Making a meaningful impact: modelling simultaneous frictional collisions in spatial multibody systems. Proc. Math. Phys. Eng. Sci. 47(2177), 20140859 (2015)

    MathSciNet  MATH  Google Scholar 

  373. 373.

    Bhatt, V., Koechling, J.: Partitioning the parameter space according to different behaviors during three-dimensional impacts. J. Appl. Mech. 62(3), 740–746 (1995)

    MATH  Article  Google Scholar 

  374. 374.

    Bhatt, V., Koechling, J.: Three-dimensional frictional rigid-body impact. J. Appl. Mech. 62(4), 893–898 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  375. 375.

    Batlle, J.A., Cardona, S.: The Jamb (self-locking) process in three-dimensional collisions. J. Appl. Mech. 65(2), 417–423 (1998)

    Article  Google Scholar 

  376. 376.

    Zhen, Z., Liu, C.: The analysis and simulation for three-dimensional impact with friction. Multibody Syst. Dyn. 18, 511–530 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  377. 377.

    Zhao, Z., Liu, C., Chen, B.: The Painlevé paradox studied at a 3D slender rod. Multibody Syst. Dyn. 19, 323–343 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  378. 378.

    Jia, Y.-B.: Three-dimensional impact: energy-based modeling of tangential compliance. Int. J. Robot. Res. 32(1), 56–83 (2013)

    Article  Google Scholar 

  379. 379.

    Elkaranshawy, H.A., Abdelrazek, A.M., Ezzat, H.M.: Tangential velocity during impact with friction in three-dimensional rigid multibody systems. Nonlinear Dyn. 90, 1443–1459 (2017)

    MathSciNet  Article  Google Scholar 

  380. 380.

    Xu, L.X.: A method for modelling contact between circular and non-circular shapes with variable radii of curvature and its application in planar mechanical systems. Multibody Syst. Dyn. 39, 153–174 (2017)

    MathSciNet  Article  Google Scholar 

  381. 381.

    Jia, Y.-B., Wang, F.: Analysis and computation of two body impact in three dimensions. J. Comput. Nonlinear Dyn. 12(4), 041012 (2017)

    Article  Google Scholar 

  382. 382.

    Kleinert, J., Simeon, B., Dreßler, J.: Nonsmooth contact dynamics for the large-scale simulation of granular material. J. Comput. Appl. Math. 316, 345–357 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  383. 383.

    Pang, J.-S., Stewart, D.E.: Differential variational inequalities. Math. Program. 113, 345–424 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  384. 384.

    Tasora, A., Negrut, D., Anitescu, M.: Large-scale parallel multi-body dynamics with frictional contact on the graphical processing unit. J. Multi-Body Dyn. 222, 315–326 (2008)

    Google Scholar 

  385. 385.

    Williams, J., Lu, Y., Trinkle, J.C.: A geometrically exact contact model for polytopes in multirigid-body simulation. J. Comput. Nonlinear Dyn. 12(2), 021001 (2017)

    Article  Google Scholar 

  386. 386.

    Pazouki, A., Kwarta, M., Williams, K., Likos, W., Serban, R., Jayakumar, P., Negrut, D.: Influence of soft and rigid contact models on granular dynamics. In: The 5th Joint International Conference on Multibody System Dynamics, June 24-28, 2018, Lisboa, Portugal (2018)

    Google Scholar 

  387. 387.

    Marques, F., Flores, P.: Da Dinâmica de Sistemas Multicorpo. Quântica Editora, Porto (2021)

    Google Scholar 

  388. 388.

    Yao, W., Chen, B., Liu, C.: Energetic coefficient of restitution for planar impact in multi-rigid-body systems with friction. Int. J. Impact Eng. 31(3), 255–265 (2005)

    Article  Google Scholar 

  389. 389.

    Ma, D., Liu, C.: Contact law and coefficient of restitution in elastoplastic spheres. J. Appl. Mech. 82(12), 121006 (2015)

    Article  Google Scholar 

  390. 390.

    Brach, R.M.: Mechanical Impact Dynamics, Rigid Body Collisions. Wiley, New York (1991)

    Book  Google Scholar 

  391. 391.

    Stronge, W.J.: Rigid body collisions with friction. Proc. R. Soc. A 341(1881), 169–181 (1990)

    MathSciNet  MATH  Google Scholar 

  392. 392.

    Ivanov, A.P.: Energetics of a collision with friction. J. Appl. Math. Mech. 56(4), 527–534 (1992)

    MathSciNet  MATH  Article  Google Scholar 

  393. 393.

    Chen, S., Zhang, Z.: Modification of friction for straightforward implementation of friction law. Multibody Syst. Dyn. 48, 239–257 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  394. 394.

    Andersson, S., Söderberg, A., Björklund, S.: Friction models for sliding dry, boundary and mixed lubricated contacts. Tribol. Int. 40, 580–587 (2007)

    Article  Google Scholar 

  395. 395.

    Klisch, T.: Contact mechanics in multibody systems. Multibody Syst. Dyn. 2, 335–354 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  396. 396.

    Piazza, S.J., Delp, S.L.: Three-dimensional dynamic simulation of total knee replacement motion during a step-up task. J. Biomech. Eng. 123(6), 599–606 (2001)

    Article  Google Scholar 

  397. 397.

    Bei, Y., Fregly, B.J.: Multibody dynamic simulation of knee contact mechanics. Med. Eng. Phys. 26(9), 777–789 (2004)

    Article  Google Scholar 

  398. 398.

    Klisch, T.: Contact mechanics in multibody dynamics. Mech. Mach. Theory 34(5), 665–675 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  399. 399.

    Peng, P., Di, C., Qian, L., Chen, G.: Parameter identification and experimental investigation of sphere-plane contact impact dynamics. Exp. Tech. 41, 547–555 (2017)

    Article  Google Scholar 

  400. 400.

    Gholami, F., Nasri, M., Kövecses, J., Teichmann, M.: A linear complementarity formulation for contact problems with regularized friction. Mech. Mach. Theory 105, 568–582 (2016)

    Article  Google Scholar 

  401. 401.

    Roy, A., Carretero, J.A.: A damping term based on material properties for the volume-based contact dynamics model. Int. J. Non-Linear Mech. 47(3), 103–112 (2012)

    Article  Google Scholar 

  402. 402.

    Pfeiffer, F., Glocker, Ch.: Contacts in multibody systems. J. Appl. Math. Mech. 64(5), 773–782 (2000)

    MATH  Article  Google Scholar 

  403. 403.

    Pfeiffer, F.: Non-smooth engineering dynamics. Meccanica 51, 3167–3184 (2016)

    MathSciNet  Article  Google Scholar 

  404. 404.

    Kwak, B.: Complementarity problem formulation of three-dimensional frictional contact. J. Appl. Mech. 58(1), 134–140 (1991)

    MATH  Article  Google Scholar 

  405. 405.

    Pang, J.-S., Trinkle, J.C.: Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction. Math. Program. 73, 199–226 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  406. 406.

    Pfeiffer, F.: The idea of complementarity in multibody dynamics. Arch. Appl. Mech. 72, 807–816 (2003)

    MATH  Article  Google Scholar 

  407. 407.

    Signorini, A.: Sopra Alcune Questioni di Elastostatica. Atti della Società Italiana per il Progresso delle Scienze (1993)

    MATH  Google Scholar 

  408. 408.

    Trinkle, J.C., Tzitzouris, J.A., Pang, J.S.: Dynamic multi-rigid-body systems with concurrent distributed contacts. Philos. Trans., Math. Phys. Eng. Sci. 359(1789), 2575–2593 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  409. 409.

    Leine, R.I., Brogliato, B., Nijmeijer, H.: Periodic motion and bifurcations induced by the Painlevé paradox. Eur. J. Mech. A, Solids 21(5), 869–896 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  410. 410.

    Pfeiffer, F.: Impacts with friction: structures, energy, measurements. Arch. Appl. Mech. 86, 281–301 (2016)

    Article  Google Scholar 

  411. 411.

    Pfeiffer, F.: On the structure of frictional impacts. Acta Mech. 229, 629–644 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  412. 412.

    Cataldo, E.: A brief review and a new treatment for rigid bodies collision models. J. Braz. Soc. Mech. Sci. 23(1), 63–78 (2001)

    MathSciNet  Article  Google Scholar 

  413. 413.

    Melanz, D., Fang, L., Jayakumar, P., Negrut, D.: A comparison of numerical methods for solving multibody dynamics problems with frictional contact modeled via differential variational inequalities. Comput. Methods Appl. Mech. Eng. 320, 668–693 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  414. 414.

    Dopico, D., Luaces, A., Gonzalez, M., Cuadrado, J.: Dealing with multiple contacts in a human-in-the-loop application. Multibody Syst. Dyn. 25(2), 167–183 (2011)

    MathSciNet  Article  Google Scholar 

  415. 415.

    Machado, M., Flores, P., Ambrósio, J.: A lookup-table-based approach for spatial analysis of contact problems. J. Comput. Nonlinear Dyn. 9(4), 041010 (2014)

    Article  Google Scholar 

  416. 416.

    Pfeiffer, F., Wolfsteiner, P.: Relative Kinematics of Multibody Contacts. Proceedings of the International Mechanical Engineering Congress and Exposition. Am. Soc. Mech. Eng., Dallas (1997)

    Google Scholar 

  417. 417.

    Hirschkorn, M., McPhee, J., Birkett, S.: Dynamic modeling and experimental testing of a piano action mechanism. J. Comput. Nonlinear Dyn. 1(1), 47–55 (2006)

    Article  Google Scholar 

  418. 418.

    Anitescu, M., Potra, F.A.: A time-stepping method for stiff multibody dynamics with contact and friction. Int. J. Numer. Methods Eng. 55(7), 753–784 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  419. 419.

    Wang, J., Chan, D.: Frictional contact algorithms in SPH for the simulation of soil-structure interaction. Int. J. Numer. Anal. Methods Geomech. 38(7), 747–770 (2014)

    Article  Google Scholar 

  420. 420.

    Güler, H.C., Berme, N., Simon, S.R.: A viscoelastic sphere model for the representation of plantar soft tissue during simulations. J. Biomech. 31(9), 847–853 (1998)

    Article  Google Scholar 

  421. 421.

    Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Dynamics of multibody systems with spherical clearance joints. J. Comput. Nonlinear Dyn. 1(3), 240–247 (2006)

    MATH  Article  Google Scholar 

  422. 422.

    Moreira, P., Silva, M., Flores, P.: Ground-Foot Interaction in Human Locomotion: Modelling and Simulation. Proceedings of ESMC2009–7th EUROMECH Solid Mechanics Conference, Instituto, Superior Técnico, Lisbon, Portugal, September, 7-11, 2009 2009, 13p.

    Google Scholar 

  423. 423.

    Millard, M., Kecskeméthy, A.: A 3D foot-ground model using disk contacts. Mech. Mach. Sci. 26, 161–169 (2015)

    Article  Google Scholar 

  424. 424.

    Sharf, I., Nahon, M.: Interference distance calculation for two objects bounded by quadratic surfaces. In: Proceedings of the ASME 1995 Design Engineering Technical Conferences Collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium, September 17-20, pp. 633–641 (1995), Paper No: DETC1995-0083

    Google Scholar 

  425. 425.

    Portal, R.F., Sousa, L.G., Dias, J.P.: Contact detection of convex superquadrics using optimization techniques with graphical user interface. In: Proceedings of 7th EUROMECH Solid Mechanics Conference, 7-11 September, Lisbon, Portugal (2009)

    Google Scholar 

  426. 426.

    Lin, X., Ng, T.-T.: Contact detection algorithms for three-dimensional ellipsoids in discrete element modelling. Int. J. Numer. Anal. Methods Geomech. 19, 653–659 (1995)

    MATH  Article  Google Scholar 

  427. 427.

    Kwak, S.D., Blankevoort, L., Ateshian, G.A.: A mathematical formulation for 3D QuasiStatic multibody models of diarthrodial joints. Comput. Methods Biomech. Biomed. Eng. 3, 41–64 (2000)

    Article  Google Scholar 

  428. 428.

    Wang, W., Wang, J., Kim, M.-S.: An algebraic condition for the separation of two ellipsoids. Comput. Aided Geom. Des. 18(6), 531–539 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  429. 429.

    Wellmann, C., Lillie, C., Wriggers, P.: A contact detection algorithm for superellipsoids based on the common-normal concept. Eng. Comput. 25(5), 432–442 (2008)

    MATH  Article  Google Scholar 

  430. 430.

    Lopes, D.S., Neptune, R.R., Ambrósio, J.A., Silva, M.T.: A superellipsoid-plane model for simulating foot–ground contact during human gait. Comput. Methods Biomech. Biomed. Eng. 19(9), 954–963 (2016)

    Article  Google Scholar 

  431. 431.

    Machado, M., Flores, P., Claro, J.C.P., Ambrosio, J., Silva, M., Completo, A., Lankarani, H.M.: Development of a planar multibody model of the human knee joint. Nonlinear Dyn. 60(3), 459–478 (2010)

    MATH  Article  Google Scholar 

  432. 432.

    Bozzone, M., Pennestrì, E., Salvini, P.: A lookup table-based method for wheel-rail contact analysis. J. Multi-Body Dyn. 225(2), 127–138 (2011)

    MATH  Google Scholar 

  433. 433.

    Li, H., Terao, A., Sugiyama, H.: Application of tabular contact search method to multibody gear dynamics simulation with tooth surface imperfections. J. Multibody Dyn. 229, 274–290 (2014)

    Google Scholar 

  434. 434.

    Marques, F., Magalhães, H., Liu, B., Pombo, J., Flores, P., Ambrósio, J., Piotrowski, J., Bruni, S.: On the generation of enhanced lookup tables for wheel-rail contact models. Wear 434–435, 202993 (2019)

    Article  Google Scholar 

  435. 435.

    Ambrósio, J.: Selected challenges in realistic multibody modeling of machines and vehicles. In: IUTAM Bookseries, vol. 33, pp. 1–39 (2019)

    Google Scholar 

  436. 436.

    Escalona, J.L., Aceituno, J.F.: Multibody simulation of railway vehicles with contact lookup tables. Int. J. Mech. Sci. 155, 571–582 (2019)

    Article  Google Scholar 

  437. 437.

    Escalona, J.L., Yu, X., Aceituno, J.F.: Wheel-rail contact simulation with lookup tables and KEC profiles: a comparative study. Multibody Syst. Dyn. 52, 339–375 (2021)

    MathSciNet  Article  Google Scholar 

  438. 438.

    Negrut, D., Tasora, A., Mazhar, H., Heyn, T., Hahn, P.: Leveraging parallel computing in multibody dynamics. Multibody Syst. Dyn. 27, 95–117 (2012)

    MATH  Article  Google Scholar 

  439. 439.

    Xia, X., Lianga, Q.: A GPU-accelerated smoothed particle hydrodynamics (SPH) model for the shallow water equations. Environ. Model. Softw. 75, 28–43 (2016)

    Article  Google Scholar 

  440. 440.

    Zhan, L., Peng, C., Zhang, B., Wu, W.: Three-dimensional modeling of granular flow impact on rigid and deformable structures. Comput. Geotech. 112, 257–271 (2019)

    Article  Google Scholar 

  441. 441.

    Zhan, L., Peng, C., Zhang, B., Wu, W.: A stabilized TL-WC SPH approach with GPU acceleration for three-dimensional fluid-structure interaction. J. Fluids Struct. 86, 329–353 (2019)

    Article  Google Scholar 

  442. 442.

    Chen, J.-Y., Lien, F.-S., Peng, C., Yee, E.: GPU-accelerated smoothed particle hydrodynamics modeling of granular flow. Powder Technol. 359(1), 94–106 (2020)

    Article  Google Scholar 

  443. 443.

    Eberly, D.H.: Game Physics Interactive 3D Technology Series. Elsevier, London (2010)

    Book  Google Scholar 

  444. 444.

    Millington, I.: Game Physics Engine Development: How to Build a Robust Commercial-Grade Physics Engine for Your Game, 2nd edn. Morgan Kaufmann, San Francisco (2010)

    Book  Google Scholar 

  445. 445.

    Liu, S., Wang, C.C.L., Hui, K.-C., Jin, X., Zhao, H.: Ellipsoid-tree construction for solid objects. In: Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling, Beijing, China, pp. 303–308 (2007)

    Chapter  Google Scholar 

  446. 446.

    Goury, O., Carrez, B., Duriez, C.: Real-time simulation for control of soft robots with self-collisions using model order reduction for contact forces. IEEE Robot. Autom. Lett. 6(2), 3752–3759 (2021)

    Article  Google Scholar 

  447. 447.

    Cohen, J., Lin, M., Manocha, D., Ponamgi, M.: I-COLLIDE: an interactive and exact collision detection system for large-scale environments. In: Proceedings of the ACM Interactive 3D Graphics Conference, pp. 189–196 (1995)

    Google Scholar 

  448. 448.

    Zachmann, G.: Rapid collision detection by dynamically aligned DOP-trees. In: Proceedings of IEEE Virtual Reality Annual International Symposium (VRAIS), Atlanta, Georgia (1998)

    Google Scholar 

  449. 449.

    Lin, M.C., Gottschalk, S.: Collision detection between geometric models: a survey. In: Proceedings of IMA Conference on Mathematics of Surfaces, San Diego, pp. 37–56 (1998)

    Google Scholar 

  450. 450.

    Klosowski, J.T., Held, M., Mitchell, J.S.B., Sowizral, H., Zikan, K.: Efficient collision detection using bounding volume hierarchies of k-DOPs. IEEE Trans. Vis. Comput. Graph. 4(1), 21–36 (1998)

    Article  Google Scholar 

  451. 451.

    Muth, B., Muller, M.K., Eberhard, P., Luding, S.: Contacts between many bodies. Mach. Dyn. Probl. 28, 101–114 (2004)

    Google Scholar 

  452. 452.

    Redon, S., Kim, Y.J., Lin, M.C., Manocha, D.A.M.D., Templeman, J.A.T.J.: Interactive and continuous collision detection for avatars in virtual environments. In: Kim, Y.J. (ed.) Virtual Reality, 2004. Proceedings, pp. 117–283. IEEE, Los Alamitos (2004)

    Chapter  Google Scholar 

  453. 453.

    Redon, S., Lin, M.C., Manocha, D., Kim, Y.J.: Fast continuous collision detection for articulated models. J. Comput. Inf. Sci. Eng. 5, 126–137 (2005)

    Article  Google Scholar 

  454. 454.

    Ericson, C.: Real-Time Collision Detection. Elsevier, Amsterdam (2005)

    Google Scholar 

  455. 455.

    Ebrahimi, S., Eberhard, P.: Aspects of contact problems in computational multibody dynamics. Comput. Methods Appl. Sci. 4, 23–47 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  456. 456.

    Kim, Y.J., Redon, S., Lin, M.C., Manocha, D., Templeman, J.: Interactive continuous collision detection using swept volume for avatars. Presence, Teleoper. Virtual Environ. 16(2), 206–223 (2007)

    Article  Google Scholar 

  457. 457.

    Hu, H., Tian, Q., Liu, C.: Soft machines: challenges to computational dynamics. Proc. IUTAM 20, 1017 (2017)

    Google Scholar 

  458. 458.

    Boor, C.: A Practical Guide to Splines, Springer, Berlin (2001), Revised Edition

    MATH  Google Scholar 

  459. 459.

    Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  460. 460.

    Marques, F.: Modeling Complex Contact Mechanics in Railway Vehicles for Dynamic Reliability Analysis and Design. PhD Thesis, University of Minho, Portugal (2020)

  461. 461.

    Atkinson, K.: An Introduction to Numerical Analysis, 2nd edn. Wiley, New York (1989)

    MATH  Google Scholar 

  462. 462.

    Nassauer, B., Kuna, M.: Contact forces of polyhedral particles in discrete element method. Granul. Matter 15, 349–355 (2013)

    Article  Google Scholar 

  463. 463.

    Vigué, P., Vergez, C., Karkar, S., Cochelin, B.: Regularized friction and continuation: comparison with Coulomb’s law. J. Sound Vib. 389, 350–363 (2017)

    Article  Google Scholar 

  464. 464.

    Areias, P., Pinto da Costa, A., Rabczuk, T., César de Sá, J.: A simple and robust Coulomb frictional algorithm based on 3 additional degrees-of-freedom and smoothing. Finite Elem. Anal. Des. 167, 103321 (2019)

    MathSciNet  Article  Google Scholar 

  465. 465.

    Mariti, L., Belfiore, N.P., Pennestrì, E., Valentini, P.P.: Comparison of solution strategies for multibody dynamics equations. Int. J. Numer. Methods Eng. 88(7), 637–656 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  466. 466.

    Marques, F., Souto, A.P., Flores, P.: On the constraints violation in forward dynamics of multibody systems. Multibody Syst. Dyn. 39(4), 385–419 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  467. 467.

    Pishkenari, H.N., Heidarzadeh, S.: A novel computer-oriented dynamical approach with efficient formulations for multibody systems including ignorable coordinates. Appl. Math. Model. 62, 461–475 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  468. 468.

    Pappalardo, C.M., Guida, D.: A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems. Arch. Appl. Mech. 88(12), 2153–2177 (2018)

    Article  Google Scholar 

  469. 469.

    Lyu, G., Liu, R.: Errors control of constraint violation in dynamical simulation for constrained mechanical systems. J. Comput. Nonlinear Dyn. 14(3), 031008 (2019)

    MathSciNet  Article  Google Scholar 

  470. 470.

    Talaeizadeh, A., Forootan, M.: Comparison of Kane’s and Lagrange’s methods in analysis of constrained dynamical systems. Robotica 38(12), 2138–2150 (2020)

    Article  Google Scholar 

  471. 471.

    Pappalardo, C.M., Lettieri, A., Guida, D.: Stability analysis of rigid multibody mechanical systems with holonomic and nonholonomic constraints. Arch. Appl. Mech. 90(9), 1961–2005 (2020)

    Article  Google Scholar 

  472. 472.

    Shigley, J.E., Mischke, C.R.: Mechanical Engineering Design. McGraw-Hill, New York (1989)

    Google Scholar 

  473. 473.

    Xu, Z., Deng, H., Zhang, Y.: Piecewise nonlinear dynamic modeling for gear transmissions with rotary inertia and backlash. IEEE Access 7, 8918277 (2019)

    Google Scholar 

  474. 474.

    Tong, R., Liu, G.: Friction property of impact sliding contact under vacuum and microgravity. Microgravity Sci. Technol. 31(1), 85–94 (2019)

    Article  Google Scholar 

  475. 475.

    Rebouças, G.F.D.S., Santos, I.F., Thomsen, J.J.: Unilateral vibro-impact systems - experimental observations against theoretical predictions based on the coefficient of restitution. J. Sound Vib. 440, 346–371 (2019)

    Article  Google Scholar 

  476. 476.

    Kan, Z., Peng, H., Chen, B., Xie, X., Sun, L.: Investigation of strut collision in tensegrity statics and dynamics. Int. J. Solids Struct. 167, 202–219 (2019)

    Article  Google Scholar 

  477. 477.

    Qu, T., Feng, Y.T., Zhao, T., Wang, M.: Calibration of linear contact stiffnesses in discrete element models using a hybrid analytical-computational framework. Powder Technol. 356, 795–807 (2019)

    Article  Google Scholar 

  478. 478.

    Chen, T., Zhang, G., Zhang, C., Gao, X., Zheng, Y.: Normal impact test of a spherical rockfall. Geotech. Geolog. Eng. 37(6), 4889–4899 (2019)

    Article  Google Scholar 

  479. 479.

    Zheng, K., Hu, Y., Yu, W.: A novel parallel recursive dynamics modeling method for robot with flexible bar-groups. Appl. Math. Model. 77, 267–288 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  480. 480.

    Alaci, S., Kalitchin, Z., Kandeva, M., Ciornei, F.C.: Method and device for the study of damping of environmental friendly foam type materials. J. Environ. Prot. Ecol. 21(4), 1298–1313 (2020)

    Google Scholar 

  481. 481.

    Yao, T., Wang, L., Liu, X., Huang, Y.: Multibody dynamics simulation of thin-walled four-point contact ball bearing with interactions of balls, ring raceways and crown-type cage. Multibody Syst. Dyn. 48(3), 337–372 (2020)

    MathSciNet  MATH  Article  Google Scholar 

  482. 482.

    Ahmadizadeh, M., Shafei, A.M., Fooladi, M.: A recursive algorithm for dynamics of multiple frictionless impact-contacts in open-loop robotic mechanisms. Mech. Mach. Theory 146, 103745 (2020)

    Article  Google Scholar 

  483. 483.

    Fonseca, C.A., Santos, I., Weber, H.I.: An experimental and theoretical approach of a pinned and a conventional ball bearing for active magnetic bearings. Mech. Syst. Signal Process. 138, 106541 (2020)

    Article  Google Scholar 

  484. 484.

    Zhang, X., Qi, Z., Wang, G., Guo, S., Qu, F.: Numerical investigation of the seismic response of a polar crane based on linear complementarity formulation. Eng. Struct. 211, 110462 (2020)

    Article  Google Scholar 

  485. 485.

    Yan, P., Zhang, J., Kong, X., Fang, Q.: Numerical simulation of rockfall trajectory with consideration of arbitrary shapes of falling rocks and terrain. Comput. Geotech. 122, 103511 (2020)

    Article  Google Scholar 

  486. 486.

    Hughes, P.J., Mosqueda, G.: Evaluation of uniaxial contact models for moat wall pounding simulations. Earthq. Eng. Struct. Dyn. 49(12), 1197–1215 (2020)

    Article  Google Scholar 

  487. 487.

    He, G., Cao, D., Cao, Y., Huang, W.: Investigation on global analytic modes for a three-axis attitude stabilized spacecraft with jointed panels. Aerosp. Sci. Technol. 106, 106087 (2020)

    Article  Google Scholar 

  488. 488.

    Costa, J.N., Antunes, P., Magalhães, H., Pombo, J., Ambrósio, J.: A novel methodology to automatically include general track flexibility in railway vehicle dynamic analyses. J. Rail Rapid Transit 235(4), 478–493 (2021)

    Article  Google Scholar 

  489. 489.

    Han, R., Wang, N., Wang, J., Gu, J., Li, X.: Silicon-chip based electromagnetic vibration energy harvesters fabricated using wafer-level micro-casting technique. J. Micromech. Microeng. 31(3), 035009 (2021)

    Article  Google Scholar 

  490. 490.

    Liu, Q., Cheng, J., Li, D., Wei, Q.: A hybrid contact model with experimental validation. J. Dyn. Syst. Meas. Control 143(9), 094501 (2021)

    Article  Google Scholar 

  491. 491.

    Askari, E.: Mathematical models for characterizing non-Hertzian contacts. Appl. Math. Model. 90, 432–447 (2021)

    MathSciNet  Article  Google Scholar 

  492. 492.

    Haug, E.J.: Simulation of spatial multibody systems with friction. Mech. Based Des. Struct. Mach. 46(3), 347–375 (2018)

    Article  Google Scholar 

  493. 493.

    Haug, E.: Simulation of friction and stiction in multibody dynamics model problems. Mech. Based Des. Struct. Mach. 46(3), 296–317 (2018)

    Article  Google Scholar 

  494. 494.

    Stuhlenmiller, F., Clos, D., Rinderknecht, S., Beckerle, P., Font-Llagunes, J.M.: Impact of friction and gait parameters on the optimization of series elastic actuators for gait assistance. Mech. Mach. Theory 133, 737–749 (2019)

    Article  Google Scholar 

  495. 495.

    Piatkowski, T., Wolski, M., Dylag, K.: Angular positioning of the objects by the system of two oblique friction force fields. Mech. Mach. Theory 140, 668–685 (2019)

    Article  Google Scholar 

  496. 496.

    Wojtyra, M., Pękal, M., Frączek, J.: Utilization of the Moore-Penrose inverse in the modeling of overconstrained mechanisms with frictionless and frictional joints. Mech. Mach. Theory 153, 103999 (2020)

    Article  Google Scholar 

  497. 497.

    Threlfall, D.C.: The inclusion of Coulomb friction in mechanisms programs with particular reference to DRAM. Mech. Mach. Theory 13, 475–483 (1978)

    Article  Google Scholar 

  498. 498.

    Bengisu, M.T., Akay, A.: Stability of friction-induced vibrations in multi-degree-of-freedom systems. J. Sound Vib. 171, 557–570 (1994)

    MATH  Article  Google Scholar 

  499. 499.

    Ambrósio, J.A.C.: Impact of rigid and flexible multibody systems: deformation description and contact model. Virtual Nonlinear Multibody Syst. 103, 57–81 (2003)

    MATH  Article  Google Scholar 

  500. 500.

    Dahl, P.R.: Solid friction damping in mechanical vibrations. AIAA J. 14, 1675–1682 (1976)

    Article  Google Scholar 

  501. 501.

    Bo, L.C., Pavelescu, D.: The friction-speed relation and its influence on the critical velocity of stick-slip motion. Wear 82, 277–289 (1982)

    Article  Google Scholar 

  502. 502.

    Karnopp, D.: Computer simulation of stick-slip friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control 107, 100–103 (1985)

    Article  Google Scholar 

  503. 503.

    Haessig, D.A., Friedland, B.: On the modeling and simulation of friction. J. Dyn. Syst. Meas. Control 113, 354–362 (1991)

    Article  Google Scholar 

  504. 504.

    Canudas de Wit, C., Olsson, H., Åström, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40, 419–425 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  505. 505.

    Dupont, P., Armstrong, B., Hayward, V.: Elasto-plastic friction model: contact compliance and stiction. In: Proceedings of the 2000 American Control Conference, vol. 2, pp. 1072–1077 (2000)

    Google Scholar 

  506. 506.

    Swevers, J., Al-Bender, F., Ganseman, C.G., Projogo, T.: An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans. Autom. Control 45, 675–686 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  507. 507.

    Dupont, P., Hayward, V., Armstrong, B., Altpeter, F.: Single state elasto-plastic friction models. IEEE Trans. Autom. Control 47, 787–792 (2002)

    MATH  Article  Google Scholar 

  508. 508.

    Lampaert, V., Swevers, J., Al-Bender, F.: Modification of the Leuven integrated friction model structure. IEEE Trans. Autom. Control 47, 683–687 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  509. 509.

    Lampaert, V., Al-Bender, F., Swevers, J.: A generalized Maxwell-slip friction model appropriate for control purposes. In: Proceedings of IEEE International Conference on Physics and Control, St. Petersburg, Russia, pp. 1170–1178 (2003)

    Google Scholar 

  510. 510.

    Al-Bender, F., Lampaert, V., Swevers, J.: The generalized Maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans. Autom. Control 50, 1883–1887 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  511. 511.

    Makkar, C., Dixon, W.E., Sawyer, W.G., Hu, G.: A new continuously differentiable friction model for control systems design. In: Proceedings of the 2005 IEEE/ASME, International Conference on Advanced Intelligent Mechatronics, pp. 600–605 (2005)

    Chapter  Google Scholar 

  512. 512.

    Wojewoda, J., Stefanski, A., Wiercigroch, M., Kapitaniak, T.: Hysteretic effects of dry friction: modelling and experimental studies. Philos. Trans. R. Soc. A 366, 747–765 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  513. 513.

    Awrejcewicz, J., Grzelczyk, D., Pyryev, Y.: A novel dry friction modeling and its impact on differential equations computation and Lyapunov exponents estimation. J. Vibroeng. 10, 475–482 (2008)

    MATH  Google Scholar 

  514. 514.

    Specker, T., Buchholz, M., Dietmayer, K.: A new approach of dynamic friction modelling for simulation and observation. IFAC Proc. Vol. 47(3), 4523–4528 (2014)

    Article  Google Scholar 

  515. 515.

    Marques, F., Woliński, L., Wojtyra, M., Flores, P., Lankarani, H.M.: An investigation of a novel LuGre-based friction force model. Mech. Mach. Theory 166, 104493 (2021)

    Article  Google Scholar 

  516. 516.

    Dubois, F., Acary, V., Jean, M.: The contact dynamics method: a nonsmooth story. C. R., Méc. 346(3), 247–262 (2018)

    Article  Google Scholar 

  517. 517.

    Panagiotopoulos, P.D.: Hemivariational Inequalities. Springer, Berlin (1993)

    MATH  Book  Google Scholar 

  518. 518.

    Glocker, C., Pfeiffer, F.: An LCP-approach for multibody systems with planar friction. In: Proceedings of the CMIS 92 Contact Mechanics Int. Symposium, Symposium, Lausanne, Switzerland, pp. 13–30 (1992)

    Google Scholar 

  519. 519.

    Leine, R.I., van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints. Lecture Notes in Applied and Computational Mechanics, vol. 36. Springer, Berlin (2008)

    MATH  Book  Google Scholar 

  520. 520.

    Flores, P., Claro, J.C.P., Ribeiro, F.: Kinematics and dynamics study of a hexapod robotic system using computational packages’ capabilities. Robótica 66(1), 10–15 (2007)

    Google Scholar 

  521. 521.

    Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82(17–19), 1359–1369 (2004)

    Article  Google Scholar 

  522. 522.

    Flores, P., Leine, R., Glocker, C.: Modeling and analysis of rigid multibody systems with translational clearance joints based on the nonsmooth dynamics approach. Multibody Syst. Dyn. 23, 165–190 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  523. 523.

    Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Translational joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011007 (2008)

    Article  Google Scholar 

  524. 524.

    Seabra, E.A.R., Flores, P., Claro, J.C.P., Silva, J.C.L.: Kinematics and dynamics study of the cam follower mechanism of the cutting file machine. In: Internationales Wissenschaftliches Kolloquium, Technische Universität Ilmenau, Germany, September 23-26, 2002 (2002), 12p.

    Google Scholar 

  525. 525.

    Seabra, E.A.R., Flores, P., Silva, J.C.L.F.: Re-Design of a Cam-Follower Mechanism of an Industrial Cutting File Machine. Third International Conference on Advanced Engineering Design, Prague, Czech Republic, June 1-4, 2003 (2003), 8p.

    Google Scholar 

  526. 526.

    Seabra, E., Flores, P., Silva, J.F.: Theoretical and experimental analysis of an industrial cutting file machine using multibody systems methodology. In: Proceedings of ECCOMAS Thematic Conference Multibody Dynamics 2007, 25–28 June, 2007 Milan (2007), 12p.

    Google Scholar 

  527. 527.

    Flores, P.: In: Contact Mechanics for Multibody Dynamics. Keynote Lecture at the Fifth Joint International Conference on Multibody System Dynamics - IMSD 2018, Instituto Superior Técnico, Lisboa, Portugal, June 24-28 pp. 24–28 (2018), 109p.

    Google Scholar 

  528. 528.

    Moreira, P., Flores, P., Silva, M.: A biomechanical multibody foot model for forward dynamic analysis. In: 2012 IEEE 2nd Portuguese Meeting in Bioengineering, ENBENG 2012, p. 6331396 (2012)

    Google Scholar 

  529. 529.

    Moreira, P., Silva, M.T., Flores, P.: Development of a three-dimensional contact model for the ground-foot interaction in gait simulations based on the viscoelastic elements. In: Proceedings of ECCOMAS Thematic Conference Multibody Dynamics 2009, Warsaw, 29 June – 2 July, 2009 (2009), 10p.

    Google Scholar 

  530. 530.

    Moreira, P., Silva, M., Flores, P.: A biomechanical multibody foot model for forward dynamic analysis. In: Proceedings of the 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland, May 25–27, 2010, (2010), 10p.

    Google Scholar 

Download references

Acknowledgements

This work has been supported by The Portuguese Foundation of Science and Technology under the national support to R&D units grant, with the reference project UIDB/04436/2020 and UIDP/04436/2020. The author would like to express his sincere and deepest gratitude to Professor Jorge Ambrósio (University of Lisbon), Professor Hamid M. Lankarani (Wichita State University), Professor Parviz Nikravesh (The University of Arizona), Professor Christoph Glocker (ETH Zurich), Professor Remco Leine (University of Stuttgart), Professor Friedrich Pfeiffer (Technical University of Munich), and Professor Andrés Kecskeméthy (University of Duisburg-Essen) for sharing their knowledge on contact dynamics. Their incredible passion and profound enthusiasm on contact problems in dynamical systems have been a permanent source of inspiration and motivation for many and many generations of researchers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulo Flores.

Additional information

Dedicated to Professor Manuel Seabra Pereira (1947-2016)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Flores, P. Contact mechanics for dynamical systems: a comprehensive review. Multibody Syst Dyn (2021). https://doi.org/10.1007/s11044-021-09803-y

Download citation

Keywords

  • Contact mechanics
  • Dynamical systems
  • Multibody dynamics
  • Contact detection
  • Contact resolution
  • Regularized methods
  • Non-smooth formulations