Skip to main content

Efficient formulation of the Gibbs–Appell equations for constrained multibody systems

Abstract

In this study, we present explicit equations of motion for general mechanical systems exposed to holonomic and nonholonomic constraints based on the Gibbs-Appell formulation. Without constructing the Gibbs function, the proposed method provides a minimal set of first-order dynamic equations applicable for multibody constrained systems. Transforming the Newton–Euler equations from physical coordinates to quasivelocity spaces eliminate constraint reaction forces from motion equations. In this study, we develop a general procedure to select effective quasivelocities, which indicate that the proposed quasivelocities satisfy constraints, eliminate Lagrange multipliers, and reduce the number of dynamic equations to degrees of freedom. Besides, we test the validity and efficiency of the proposed approach using three constrained dynamical systems as illustrative examples. Finally, we compare the simulation results with Udwadia–Kalaba, augmented Lagrangian, and other conventional methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Ginsberg, J.H.: Advanced Engineering Dynamics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  2. 2.

    Bajodah, A.H., Chen, Y.-H.: Canonical generalized inversion form of Kane’s equations of motion for constrained mechanical systems. In: Nonlinear Systems: Modeling, Estimation, and Stability, p. 31 (2018)

    Google Scholar 

  3. 3.

    Vilkko, R., et al.: Landmark writings in Western mathematics 1640–1940. Rev. Mod. Log. 11(1–2), 205–218 (2007). Edited by I. Grattan-Guinness

    Google Scholar 

  4. 4.

    Náprstek, J., Fischer, C.: Appell–Gibbs approach in dynamics of non-holonomic systems. In: Nonlinear Systems-Modeling, Estimation, and Stability. IntechOpen, London (2018)

    MATH  Google Scholar 

  5. 5.

    Desloge, E.A.: Relationship between Kane’s equations and the Gibbs–Appell equations. J. Guid. Control Dyn. 10(1), 120–122 (1987)

    Article  Google Scholar 

  6. 6.

    Borri, M., Bottasso, C., Mantegazza, P.: Equivalence of Kane’s and Maggi’s equations. Meccanica 25(4), 272–274 (1990)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Maggi, G.A.: Principii della teoria matematica del movimento dei corpi: corso di meccanica razionale. Ulrico Hoepli, Milano (1896)

    MATH  Google Scholar 

  8. 8.

    Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011004 (2008)

    Article  Google Scholar 

  9. 9.

    Bajodah, A.H., Hodges, D.H., Chen, Y.-H.: New form of Kane’s equations of motion for constrained systems. J. Guid. Control Dyn. 26(1), 79–88 (2003)

    Article  Google Scholar 

  10. 10.

    Pishkenari, H.N., Yousefsani, S., Gaskarimahalle, A., Oskouei, S.: A fresh insight into Kane’s equations of motion. Robotica 35(3), 498–510 (2017)

    Article  Google Scholar 

  11. 11.

    Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 439(1906), 407–410 (1992)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Udwadia, F., Kalaba, R.: The explicit Gibbs-Appell equation and generalized inverse forms. Q. Appl. Math. 56(2), 277–288 (1998)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Blajer, W.: A geometrical interpretation and uniform matrix formulation of multibody system dynamics. J. Appl. Math. Mech./Z. Angew. Math. Mech. 81(4), 247–259 (2001)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Pishkenari, H.N., Heidarzadeh, S.: A novel computer-oriented dynamical approach with efficient formulations for multibody systems including ignorable coordinates. Appl. Math. Model. 62, 461–475 (2018)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Marques, F., Souto, A.P., Flores, P.: On the constraints violation in forward dynamics of multibody systems. Multibody Syst. Dyn. 39(4), 385–419 (2017)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Bayo, E., De Jalon, J.G., Serna, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Mech. Eng. 71(2), 183–195 (1988)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Bayo, E., Ledesma, R.: Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamics. Nonlinear Dyn. 9(1–2), 113–130 (1996)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Dopico, D., González, F., Luaces, A., Saura, M., García-Vallejo, D.: Direct sensitivity analysis of multibody systems with holonomic and nonholonomic constraints via an index-3 augmented Lagrangian formulation with projections. Nonlinear Dyn. 93(4), 2039–2056 (2018)

    Article  Google Scholar 

  19. 19.

    Mata, V., Provenzano, S., Valero, F., Cuadrado, J.: Serial-robot dynamics algorithms for moderately large numbers of joints. Mech. Mach. Theory 37(8), 739–755 (2002)

    Article  Google Scholar 

  20. 20.

    Vossoughi, G., Pendar, H., Heidari, Z., Mohammadi, S.: Assisted passive snake-like robots: conception and dynamic modeling using Gibbs–Appell method. Robotica 26(3), 267–276 (2008)

    Article  Google Scholar 

  21. 21.

    Korayem, M., Shafei, A., Shafei, H.: Dynamic modeling of nonholonomic wheeled mobile manipulators with elastic joints using recursive Gibbs–Appell formulation. Sci. Iran. 19(4), 1092–1104 (2012)

    Article  Google Scholar 

  22. 22.

    Korayem, M., Shafei, A.: Application of recursive Gibbs–Appell formulation in deriving the equations of motion of \(n\)-viscoelastic robotic manipulators in 3D space using Timoshenko beam theory. Acta Astronaut. 83, 273–294 (2013)

    Article  Google Scholar 

  23. 23.

    Korayem, M., Shafei, A., Dehkordi, S.: Systematic modeling of a chain of \(n\)-flexible link manipulators connected by revolute–prismatic joints using recursive Gibbs–Appell formulation. Arch. Appl. Mech. 84(2), 187–206 (2014)

    Article  Google Scholar 

  24. 24.

    Marghitu, D.B., Cojocaru, D.: Gibbs–Appell equations of motion for a three link robot with MATLAB. In: Advances in Robot Design and Intelligent Control, pp. 317–325. Springer, Berlin (2016)

    Chapter  Google Scholar 

  25. 25.

    Malayjerdi, M., Akbarzadeh, A.: Analytical modeling of a 3-d snake robot based on sidewinding locomotion. Int. J. Dyn. Control 7(1), 83–93 (2019)

    Article  Google Scholar 

  26. 26.

    Baruh, H.: Applied Dynamics. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  27. 27.

    Gallier, J., et al.: The Schur Complement and Symmetric Positive Semidefinite (and Definite) Matrices, pp. 1–12. Penn Engineering, University of Pennsylvania (2010)

    Google Scholar 

  28. 28.

    Mirtaheri, S.M., Zohoor, H.: Quasi-velocities definition in Lagrangian multibody dynamics. Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci. 0954406221995852 (2021)

  29. 29.

    Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. A, Math. Phys. Eng. Sci. 462(2071), 2097–2117 (2006)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Uchida, T., Vyasarayani, C., Smart, M., McPhee, J.: Parameter identification for multibody systems expressed in differential-algebraic form. Multibody Syst. Dyn. 31(4), 393–403 (2014)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Zhang, J., Liu, D., Liu, Y.: A constraint violation suppressing formulation for spatial multibody dynamics with singular mass matrix. Multibody Syst. Dyn. 36(1), 87–110 (2016)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. M. Mirtaheri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Selecting quasivelocities based on the general proposed procedure in this research and using Eq. (35), we have

$$ {\left \{ \dot{{\gamma }_{\mathrm{1}}}\right \} }_{r\mathrm{\times 1}} = {\left [a\right ]}_{r\times m}{\left \{ \dot{q} \right \} }_{m\mathrm{\times 1}} + {\left \{ b\right \} }_{r \mathrm{\times 1}} = {\left \{ 0\right \} }_{r\mathrm{\times 1}}, $$
$$ {\left \{ \dot{{\gamma }_{\mathrm{2}}}\right \} }_{p\mathrm{\times 1}} = {\left [{\left [0\right ]}_{p\times r}\ { \left [y\right ]}_{p\times p}\right ]}_{p\times n}{ \left \{ \dot{q}\right \} }_{n\mathrm{\times 1}}, $$
(68)

where \(\left [y\right ]\) is an arbitrary square matrix \(\in {\mathbb{R}}^{p}\times {\mathbb{R}}^{p}\), and

$$ {\left \{ \dot{\gamma }\right \} }_{n\mathrm{\times 1}} = \left \{ \textstyle\begin{array}{c} \dot{{\gamma }_{\mathrm{1}}} \\ \dot{{\gamma }_{\mathrm{2}}} \end{array}\displaystyle \right \} = \left [ \textstyle\begin{array}{c@{\quad }c} {\left [a_{\mathrm{1}}\right ]}_{r\times r} & {\left [a_{ \mathrm{2}}\right ]}_{r\times p} \\ {\left [0\right ]}_{p\times r} & {\left [y\right ]}_{p \times p} \end{array}\displaystyle \right ]{\left \{ \dot{q}\right \} }_{n\mathrm{\times 1}} + \left \{ \textstyle\begin{array}{c} {\left \{ b\right \} }_{r\mathrm{\times 1}} \\ {\left \{ z\right \} }_{p\mathrm{\times 1}} \end{array}\displaystyle \right \} . $$
(69)

Based on Eq. (12), we have

$$ \left [w\right ] = \left [ \textstyle\begin{array}{c@{\quad }c} {\left [a_{\mathrm{1}}\right ]}_{r\times r} & {\left [a_{ \mathrm{2}}\right ]}_{r\times p} \\ {\left [0\right ]}_{p\times r} & {\left [y\right ]}_{p \times p} \end{array}\displaystyle \right ]. $$
(70)

Differentiation of Eq. (69) with respect to time yields

$$ \left \{ \ddot{q}\right \} = \left [u\right ]{\left [w\right ]}^{ -\mathrm{1}}\left \{ \ddot{\gamma }\right \} + \left \{ \overline{v}(q,\dot{q},\dot{\gamma },t)\right \} . $$
(71)

By partitioning a matrix into four blocks, it can be inverted clockwise as

$$ {\left [ \textstyle\begin{array}{c@{\quad }c} \mathrm{A} & \mathrm{B} \\ \mathrm{C} & \mathrm{D} \end{array}\displaystyle \right ]}^{-\mathrm{1}} = \left [ \textstyle\begin{array}{c@{\quad }c} {\mathrm{A}}^{-\mathrm{1}} + {\mathrm{A}}^{- \mathrm{1}}\mathrm{B}{\left (\mathrm{D-C}{\mathrm{A}}^{- \mathrm{1}}\mathrm{B}\right )}^{-\mathrm{1}}\mathrm{C}{ \mathrm{A}}^{-\mathrm{1}} & -{\mathrm{A}}^{ -\mathrm{1}}\mathrm{B}{\left (\mathrm{D-C}{\mathrm{A}}^{ -\mathrm{1}}\mathrm{B}\right )}^{-\mathrm{1}} \\ -{\left (\mathrm{D-C}{\mathrm{A}}^{-\mathrm{1}} \mathrm{B}\right )}^{-\mathrm{1}}\mathrm{C}{\mathrm{A}}^{ -\mathrm{1}} & {\left (\mathrm{D-C}{\mathrm{A}}^{- \mathrm{1}}\mathrm{B}\right )}^{-\mathrm{1}} \end{array}\displaystyle \right ]\ , $$
(72)

where A, B, C, and D have arbitrary sizes. (A and D should be squared so that they can be inverted.) Furthermore, A and \(\left (\mathrm{D-C}{ \mathrm{A}}^{-\mathrm{1}}\mathrm{B}\right )\) must be nonsingular, and

$$\begin{aligned} {\left [w\right ]}^{-\mathrm{1}} &= {\left [ \textstyle\begin{array}{c@{\quad }c} {\left [a_{\mathrm{1}}\right ]}_{r\times r} & {\left [a_{ \mathrm{2}}\right ]}_{r\times p} \\ {\left [0\right ]}_{p\times r} & {\left [y\right ]}_{p \times p} \end{array}\displaystyle \right ]}^{-\mathrm{1}} \\ &= \left [ \textstyle\begin{array}{c@{\quad }c} {\left [a_{\mathrm{1}}\right ]}^{-\mathrm{1}} + { \left [a_{\mathrm{1}}\right ]}^{-\mathrm{1}}\left [a_{ \mathrm{2}}\right ]{\left [y\right ]}^{-\mathrm{1}}\left [0 \right ]{\left [a_{\mathrm{1}}\right ]}^{-\mathrm{1}} & -{\left [a_{\mathrm{1}}\right ]}^{-\mathrm{1}} \left [a_{\mathrm{2}}\right ]{\left [y\right ]}^{-\mathrm{1}} \\ -{\left [y\right ]}^{-\mathrm{1}}\left [0\right ]{ \left [a_{\mathrm{1}}\right ]}^{-\mathrm{1}} & {\left [y \right ]}^{-\mathrm{1}} \end{array}\displaystyle \right ]. \end{aligned}$$
(73)

Substituting Eq. (70) into Eq. (72), we have

$$ {\left [\Omega \right ]}_{(m\times m )} = \left [ \textstyle\begin{array}{c@{\quad }c} {\left [a_{\mathrm{1}}\right ]}^{-\mathrm{1}} & -{ \left [a_{\mathrm{1}}\right ]}^{-\mathrm{1}}\left [a_{ \mathrm{2}}\right ]\left [\beta \right ] \\ \left [0\right ] & \left [\beta \right ] \end{array}\displaystyle \right ]\ ,\ \left [\beta \right ] = {\left [y\right ]}^{ -\mathrm{1}}. $$
(74)

Multiplying the constraint matrix \(\left [\mathrm{a}\right ]\ \)and \(\left [\Omega \right ]\) yields

$$ \left [\mathrm{a}\right ]\left [\Omega \right ] = \left [ \textstyle\begin{array}{c@{\quad }c} \left [a_{\mathrm{1}}\right ] & \left [a_{\mathrm{2}}\right ] \end{array}\displaystyle \right ]\left [ \textstyle\begin{array}{c@{\quad }c} {\left [a_{\mathrm{1}}\right ]}^{-\mathrm{1}} & -{ \left [a_{\mathrm{1}}\right ]}^{-\mathrm{1}}\left [a_{ \mathrm{2}}\right ]\left [\beta \right ] \\ \left [0\right ] & \left [\beta \right ] \end{array}\displaystyle \right ] = \left [ \textstyle\begin{array}{c@{\quad }c} \left [I\right ] & \left [0\right ] \end{array}\displaystyle \right ]. $$
(75)

Finally, Eq. (27) is proved as follows:

$$ {\left [\Omega \right ]}^{T}{\left [\mathrm{a}\right ]}^{T} \left \{ \lambda \right \} = \left [ \textstyle\begin{array}{c} {[I]}_{r\times r} \\ {\mathrm{[0]}}_{p\times r} \end{array}\displaystyle \right ]\left \{ \lambda \right \} . $$
(76)

Appendix B

In this annex, we prove that \(\ \frac{\partial {\tilde{\boldsymbol{a}}}_{G}}{\partial \ddot{\boldsymbol{q}}} = \frac{\partial {\tilde{\boldsymbol{v}}}_{G}}{\partial \dot{\boldsymbol{q}}}\). This is an important equation to reduce calculations, where \({\tilde{v}}_{G}\left (\dot{\boldsymbol{q}},\boldsymbol{q},t\right ) \ \text{and}\ {\tilde{a}}_{G}\left (\ddot{\boldsymbol{q}}, \dot{\boldsymbol{q}},\boldsymbol{q},t\right )\) denote the velocity and acceleration vectors of the mass center, respectively, and are defined as follows:

$$ \left \{ {\tilde{a}}_{G}\right \} = {[a_{Gx},a_{Gy},a_{Gz},{ \dot{\omega }}_{x},{\dot{\omega }}_{y},{\dot{\omega }}_{z}]}^{T} \ , \ \left \{ {\tilde{v}}_{G}\right \} = {[v_{Gx},v_{Gy},v_{Gz},{ \omega }_{x},{\omega }_{y},{\omega }_{z}]}^{T}. $$
(77)

To simplify the formulation, the velocity vector can be written in following matrix notation:

$$ {\tilde{v}}_{G}\left (\dot{\boldsymbol{q}},\boldsymbol{q},t\right ) = \boldsymbol{\eta }\ \dot{\boldsymbol{q}} + \boldsymbol{\kappa }\ , $$
(78)

where \(\boldsymbol{\eta }(\boldsymbol{q},t)\in { \mathbb{R}}^{\mathrm{6}}\times {\mathbb{R}}^{n}\) and \(\boldsymbol{\kappa }(\boldsymbol{q},t) \in {\mathbb{R}}^{\mathrm{6}}\) are functions of generalized coordinates, vector \(\boldsymbol{q}\), and time. In addition, the generalized acceleration vector can be expressed in terms of kinematic characteristics by taking the time derivative of Eq. (78) leading to the equation

$$ \left \{ {\tilde{a}}_{G}\right \} = \frac{d}{dt}{\tilde{v}}_{G} \left (\dot{\boldsymbol{q}},\boldsymbol{q},t\right ) = \boldsymbol{\eta }\ddot{\boldsymbol{q}} + \dot{\boldsymbol{\eta }}(\dot{\boldsymbol{q}},\boldsymbol{q},t )\dot{\boldsymbol{q}} + \dot{\boldsymbol{\kappa }} \ (\dot{\boldsymbol{q}},\boldsymbol{q},t). $$
(79)

Using definitions (78) and (79), we conclude that the \(\mathit{jacoobian}\left (\left \{ {\tilde{a}}_{G}\right \} ; \left \{ \ddot{q}\right \} \right )\) is equal to \(\operatorname{jacoobian}\left (\left \{ {\tilde{v}}_{G}\right \} ;\left \{ \dot{q}\right \} \right )\). In fact, we have

$$ \frac{\partial \left \{ {\tilde{a}}_{G}\right \} }{\partial \left \{ \ddot{q}\right \} } = \frac{\partial \left \{ {\tilde{v}}_{G}\right \} }{\partial \left \{ \dot{q}\right \} } = \boldsymbol{\eta }. $$
(80)

Substituting Eq. (80) into Eq. (25) gives the alternative form of \(\left \{ U^{\mathrm{*}}\right \} \) as

$$ {\left \{ U^{\mathrm{*}}\right \} }_{(n\mathrm{\times 1)}} = \sum ^{N}_{i=1}{ \frac{\partial { \left \{ {\tilde{v}}_{G}\right \} }_{i}}{\partial \left \{ \dot{q}\right \} } \ {\left \{ \mathrm{U}\right \} }_{i}}. $$
(81)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mirtaheri, S.M., Zohoor, H. Efficient formulation of the Gibbs–Appell equations for constrained multibody systems. Multibody Syst Dyn 53, 303–325 (2021). https://doi.org/10.1007/s11044-021-09798-6

Download citation

Keywords

  • Explicit equations of motion
  • Gibbs–Appell equations
  • Newton–Euler equations
  • Nonholonomic constraint equations
  • Quasivelocities
  • Elimination of Lagrange multipliers