Skip to main content

Numerical methods of closed-loop multibody systems with singular configurations based on the geometrical structure of constraints

Abstract

The geometrical structure of constraints leads to the important conclusion that components of velocities and accelerations in the normal space of the constraint hypersurface are totally determined by the constraints. Orthogonal base vectors of the constraint’s normal and tangent spaces can be obtained by the QR decomposition with column permutation. A numerical method of closed-loop multibody systems with singular configurations is presented, in which the traditional hypothesis on independence of constraints is abandoned. Instead of correcting constraint violations at the end of each integration step, positions and velocities are modified to satisfy their constraint equations before they are used to form equations of motion. Such an approach can collaborate with any standard ODE solver. In order to systematically generate constraint equations and obtain the corresponding joint’s reaction forces, rotational and translational constraints of a closed-loop are standardized as part of six explicit equations, and a clear relationship between Lagrange multipliers and joint’s reaction forces is derived based on the principle of virtual power equivalence. The proposed method can dynamically identify independent constraints and modify the equations of motion accordingly. The numerical examples validated its effectiveness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  1. 1.

    Wittenburg, J.: Dynamics of Multibody Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. 2.

    Chaudhary, H., Saha, S.K.: Dynamics and Balancing of Multibody Systems. Springer, Berlin (2009)

    MATH  Book  Google Scholar 

  3. 3.

    Flores, P.: Concepts and Formulations for Spatial Multibody Dynamics. Springer, Cham (2015)

    MATH  Book  Google Scholar 

  4. 4.

    Soetaert, K., Cash, J., Mazzia, F.: Solving Differential Equations in R. Springer, Berlin (2012)

    MATH  Book  Google Scholar 

  5. 5.

    SchRops, S., Bartel, A., GRunthe, M., Maten, E.J.W.: Progress in Differential-Algebraic Equations. Springer, Berlin (2014)

    Google Scholar 

  6. 6.

    Ilchmann, A., Reis, T.: Differential-Algebraic Equations Forum. Springer, Berlin (2017)

    MATH  Book  Google Scholar 

  7. 7.

    Yen, J., Haug, E.J., Tak, T.O.: Numerical methods for constrained equations of motion in mechanical system dynamics. J. Struct. Mech. 19(1), 41–76 (1991)

    MathSciNet  Google Scholar 

  8. 8.

    Petzold, L.R.: Numerical solution of differential-algebraic equations in mechanical systems simulation. Physica D 60(1–4), 269–279 (1992)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Pogorelov, D.: Differential–algebraic equations in multi-body system modeling. Numer. Algorithms 19, 183–194 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Baumgarte, J.: A new method of stabilization for holonomic constraints. J. Appl. Mech. 50, 869–870 (1983)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Ascher, U.R., Chin, H., Reich, S.: Stabilization of DAEs and invariant manifolds. Numer. Math. 67(2), 131–149 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Kikuuwe, R., Brogliato, B.: A new representation of systems with frictional unilateral constraints and its Baumgarte-like relaxation. Multibody Syst. Dyn. 39(3), 267–290 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Zhang, X., Wang, C., Guo, K., Sun, M., Yao, Q.: Dynamics modeling and characteristics analysis of scissor seat suspension. J. Vib. Control 23(17), 2819–2829 (2015)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Tan, H., Hu, Y., Li, L.: A continuous analysis method of planar rigid-body mechanical systems with two revolute clearance joints. Multibody Syst. Dyn. 40(4), 347–373 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Flores, P., Machado, M., Seabra, E., Tavares da Silva, M.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6(1), 011019:1–011019:9 (2011)

    Google Scholar 

  17. 17.

    Lin, S.T., Huang, J.N.: Stabilization of Baumgarte’s method using the Runge–Kutta approach. J. Mech. Des. 124(4), 633–641 (2002)

    Article  Google Scholar 

  18. 18.

    Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104(1), 247–255 (1982)

    Google Scholar 

  19. 19.

    Nikravesh, P.E., Haug, E.J.: Generalized coordinate partitioning for analysis of mechanical system with nonholonomic constraints. J. Mech. Transm. Autom. Des. 105(3), 379–384 (1983)

    Article  Google Scholar 

  20. 20.

    Terze, Z., Naudet, J.: Structure of optimized generalized coordinates partitioned vectors for holonomic and non-holonomic systems. Multibody Syst. Dyn. 24(2), 203–218 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Pappalardo, C.M., Guida, D.: On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody systems. Arch. Appl. Mech. 87(10), 1647–1665 (2017)

    Article  Google Scholar 

  22. 22.

    Sinokrot, T., Nakhaeinejad, M., Shabana, A.A.: A velocity transformation method for the nonlinear dynamic simulation of railroad vehicle systems. Nonlinear Dyn. 51(1–2), 289–307 (2008)

    MATH  Google Scholar 

  23. 23.

    Uchida, T., Callejo, A., García de Jalón, J., McPhee, J.: On the Gröbner basis triangularization of constraint equations in natural coordinates. Multibody Syst. Dyn. 31(3), 371–392 (2013)

    Article  Google Scholar 

  24. 24.

    Blajer, W., Schiehlen, W., Schirm, W.: A projective criterion to the coordinate partitioning method for multibody dynamics. Arch. Appl. Mech. 64, 86–98 (1994)

    MATH  Google Scholar 

  25. 25.

    Carpinelli, M., Gubitosa, M., Mundo, D., Desmet, W.: Automated independent coordinates’ switching for the solution of stiff DAEs with the linearly implicit Euler method. Multibody Syst. Dyn. 36(1), 67–85 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Wehage, K.T., Wehage, R.A., Ravani, B.: Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mech. Mach. Theory 92, 464–483 (2015)

    Article  Google Scholar 

  27. 27.

    Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005:1–011005:8 (2008)

    Google Scholar 

  28. 28.

    Yu, Q., Chen, I.M.: A direct violation correction method in numerical simulation of constrained multibody systems. Comput. Mech. 26(1), 52–57 (2000)

    MATH  Article  Google Scholar 

  29. 29.

    Blajer, W.: A geometric unification of constrained system dynamics. Multibody Syst. Dyn. 1(1), 3–21 (1997)

    MathSciNet  MATH  Article  Google Scholar 

  30. 30.

    Zhang, J., Liu, D., Liu, Y.: A constraint violation suppressing formulation for spatial multibody dynamics with singular mass matrix. Multibody Syst. Dyn. 36(1), 87–110 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Eich, E.: Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints. SIAM J. Numer. Anal. 30(5), 1467–1482 (1993)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Yoon, S., Howe, R.M., Greenwood, D.T.: Geometric elimination of constraint violations in numerical simulation of Lagrangian equations. J. Mech. Des. 116(4), 1058–1064 (1994)

    Article  Google Scholar 

  33. 33.

    Blajer, W.: Elimination of constraint violation and accuracy aspects in numerical simulation of multibody systems. Multibody Syst. Dyn. 7(3), 265–284 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    García de Jalón, J., Gutiérrez-López, M.D.: Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces. Multibody Syst. Dyn. 30(3), 311–341 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Blajer, W.: An orthonormal tangent space method for constrained multibody systems. Comput. Methods Appl. Mech. Eng. 121(1–4), 45–57 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Wojtyra, M., Frączek, J.: Comparison of selected methods of handling redundant constraints in multibody systems simulations. J. Comput. Nonlinear Dyn. 8(2), 021007:1–021007:9 (2012)

    Google Scholar 

  37. 37.

    Aghili, F., Piedboeuf, J.C.: Simulation of motion of constrained multibody systems based on projection operator. Multibody Syst. Dyn. 10(1), 3–16 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Marques, F., Souto, A.P., Flores, P.: On the constraints violation in forward dynamics of multibody systems. Multibody Syst. Dyn. 39(4), 385–419 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Bayo, E., Jalon, J.G.D., Sema, M.A.: A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Comput. Methods Appl. Mech. Eng. 71(2), 183–195 (1988)

    MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Blajer, W.: Augmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancy. Multibody Syst. Dyn. 8(2), 141–159 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Neto, M.A., Ambrósio, J.: Stabilization methods for the integration of DAE in the presence of redundant constraints. Multibody Syst. Dyn. 10(1), 81–105 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Kim, S.S., Vanderploeg, M.J.: QR decomposition for state space representation of constrained mechanical dynamic systems. J. Mech. Transm. Autom. Des. 108(2), 183–188 (1986)

    Article  Google Scholar 

  43. 43.

    Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  44. 44.

    Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)

    Google Scholar 

  45. 45.

    Greenwood, D.T.: Principles of Dynamics. Prentice Hall, Englewood Cliffs (1965)

    Google Scholar 

  46. 46.

    Golub, G.H.: Numerical methods for solving linear least square problems. Numer. Math. 7(3), 206–216 (1965)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Businger, P., Golub, G.H.: Linear least square solutions by householder transformations. Numer. Math. 7(1), 269–276 (1965)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Qi, Z.H., Xu, Y.S., Luo, X.M., Yao, S.J.: Recursive formulations for multibody systems with frictional joints based on the interaction between bodies. Multibody Syst. Dyn. 24(2), 133–166 (2010)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11872137 and No. 91748203 and No. 11802048).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhaohui Qi or Gang Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhuo, Y., Qi, Z., Wang, G. et al. Numerical methods of closed-loop multibody systems with singular configurations based on the geometrical structure of constraints. Multibody Syst Dyn 53, 275–301 (2021). https://doi.org/10.1007/s11044-021-09797-7

Download citation

Keywords

  • Multibody systems with closed loops
  • Differential–algebraic equations
  • Identifying independent constraints
  • Correction of constraint violations
  • Joint’s reaction forces