Analysis of driving styles of a GP2 car via minimum lap-time direct trajectory optimization

Abstract

This paper addresses the problem of the link between the driving style of an ideal driver, modelled as an optimal controller, and fundamental set-up parameters of a vehicle in the GP2 motorsport class. The aim is to evaluate quantitatively how set-up parameters, like distribution of aerodynamic loads, weight and roll stiffness between front and rear axles, affect the driving style, encoded in the shape of the optimal trajectory and in the acceleration, brake and steer inputs.

To this aim, we develop an optimization code that includes a double-track vehicle model capable of solving the minimum lap-time problem (MLTP) on a given track. The track is represented via NURBS curves and the MLTP is framed and solved as an optimal control problem by transcription into a nonlinear program using direct collocation. To assess the accuracy of the vehicle model and the optimization pipeline, we also validate our results against real telemetry data.

The developed software framework lends itself to easily perform both sensitivity analysis and concurrent trajectory planning and set-up parameter optimization: this is obtained by simple promotion of static parameters of interests to variables in the optimal control problem. Some results along these lines are also included.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Notes

  1. 1.

    The driving style is assumed to be encoded in his telemetry data.

  2. 2.

    Here and in the remaining of the paper, we assume that \(s_{N-1}=1\) is always associated to the finish line of the particular track sector under investigation. This can be either the whole track or a part of it and can be elicited from the context.

References

  1. 1.

    Brayshaw, D.L., Harrison, M.F.: A quasi steady state approach to race car lap simulation in order to understand the effects of racing line and centre of gravity location. Proc. Inst. Mech. Eng., Part D, J. Automob. Eng. 219(6), 725–739 (2005)

    Article  Google Scholar 

  2. 2.

    Tremlett, A.J., Assadian, F., Purdy, D.J., Vaughan, N., Moore, A.P., Halley, M.: Quasi-steady-state linearisation of the racing vehicle acceleration envelope: a limited slip differential example. Veh. Syst. Dyn. 52(11), 1416–1442 (2014)

    Article  Google Scholar 

  3. 3.

    Sharp, R.S., Peng, H.: Vehicle dynamics applications of optimal control theory. Veh. Syst. Dyn. 49(7), 1073–1111 (2011)

    Article  Google Scholar 

  4. 4.

    Liberzon, D.: Calculus of Variations and Optimal Control Theory: A Concise Introduction. Princeton University Press, Princeton (2011)

    MATH  Book  Google Scholar 

  5. 5.

    Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. Advances in Design and Control. SIAM, Philadelphia (2010)

    MATH  Book  Google Scholar 

  6. 6.

    Cossalter, V., Da Lio, M., Lot, R., Fabbri, L.: A general method for the evaluation of vehicle manoeuvrability with special emphasis on motorcycles. Veh. Syst. Dyn. 31(2), 113–135 (1999)

    Article  Google Scholar 

  7. 7.

    Bertolazzi, E., Biral, F., Da Lio, M.: Symbolic-numeric indirect method for solving optimal control problems for large multibody systems: the time-optimal racing vehicle example. Multibody Syst. Dyn. 13(2), 233–252 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Tavernini, D., Massaro, M., Velenis, E., Katzourakis, D.I., Lot, R.: Minimum time cornering: the effect of road surface and car transmission layout. Veh. Syst. Dyn. 51(10), 1533–1547 (2013)

    Article  Google Scholar 

  9. 9.

    Dal Bianco, N., Lot, R., Gadola, M.: Minimum time optimal control simulation of a GP2 race car. Proc. Inst. Mech. Eng., Part D, J. Automob. Eng. 232(9), 1180–1195 (2018)

    Article  Google Scholar 

  10. 10.

    Dal Bianco, N., Bertolazzi, E., Biral, F., Massaro, M.: Comparison of direct and indirect methods for minimum lap time optimal control problems. Veh. Syst. Dyn. 57(5), 665–696 (2019)

    Article  Google Scholar 

  11. 11.

    Lot, R., Dal Bianco, N.: The significance of high-order dynamics in lap time simulations. In: The Dynamics of Vehicles on Roads and Tracks – Proceedings of the 24th Symposium of the International Association for Vehicle System Dynamics, IAVSD 2015, pp. 553–562 (2016)

    Google Scholar 

  12. 12.

    Lot, R., Da Lio, M.: A symbolic approach for automatic generation of the equations of motion of multibody systems. Multibody Syst. Dyn. 12(2), 147–172 (2004)

    MATH  Article  Google Scholar 

  13. 13.

    Casanova, D., Sharp, R.S., Symonds, P.: Minimum time manoeuvring: the significance of yaw inertia. Veh. Syst. Dyn. 34(2), 77–115 (2000)

    Article  Google Scholar 

  14. 14.

    Perantoni, G., Limebeer, D.J.N.: Optimal control for a formula one car with variable parameters. Veh. Syst. Dyn. 52(5), 653–678 (2014)

    Article  Google Scholar 

  15. 15.

    Van Koutrik, S.: Optimal control for race car minimum time maneuvering. Master thesis, Delft University of Technology (2015)

  16. 16.

    Kelly, D.: Lap time simulation with transient vehicle and tyre dynamics. PhD thesis, Cranfield University (2008)

  17. 17.

    Kelly, D.P., Sharp, R.S.: Time-optimal control of the race car: a numerical method to emulate the ideal driver. Veh. Syst. Dyn. 48(12), 1461–1474 (2010)

    Article  Google Scholar 

  18. 18.

    Kelly, D.P., Sharp, R.S.: Time-optimal control of the race car: influence of a thermodynamic tyre model. Veh. Syst. Dyn. 50(4), 641–662 (2012)

    Article  Google Scholar 

  19. 19.

    Christ, F., Wischnewski, A., Heilmeier, A., Lohmann, B.: Time-optimal trajectory planning for a race car considering variable tyre-road friction coefficients. Veh. Syst. Dyn. 59(1), 1–25 (2019)

    Google Scholar 

  20. 20.

    Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: Casadi: a software framework for nonlinear optimization and optimal control. Math. Program. Comput. 11, 1–36 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Wächter, A., Biegler, L.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Novi, T., Liniger, A., Capitani, R., Annicchiarico, C.: Real-time control for at-limit handling driving on a predefined path. Veh. Syst. Dyn. 58(7), 30 (2020)

    Article  Google Scholar 

  23. 23.

    Liniger, A., Lygeros, J.: Real-time control for autonomous racing based on viability theory. IEEE Trans. Control Syst. Technol. 27(2), 464–478 (2019)

    Article  Google Scholar 

  24. 24.

    Rosolia, U., Borrelli, F.: Learning how to autonomously race a car: a predictive control approach. IEEE Trans. Control Syst. Technol. 28(6), 2713–2719 (2019)

    Article  Google Scholar 

  25. 25.

    Houska, B., Ferreau, H.J., Diehl, M.: Acado toolkit – an open-source framework for automatic control and dynamic optimization. Optim. Control Appl. Methods 32(3), 298–312 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  26. 26.

    Domahidi, A., Zgraggen, A.U., Zeilinger, M.N., Morari, M., Jones, C.N.: Efficient interior point methods for multistage problems arising in receding horizon control. In: IEEE Conference on Decision and Control, pp. 668–674 (2012)

    Google Scholar 

  27. 27.

    Verschueren, R., De Bruyne, S., Zanon, M., Frasch, J.V., Diehl, M.: Towards time-optimal race car driving using nonlinear mpc in real-time. In: IEEE Conference on Decision and Control, Los Angeles, USA, vol. 2015–February, pp. 2505–2510 (2014)

    Chapter  Google Scholar 

  28. 28.

    Liniger, A., Domahidi, A., Morari, M.: Optimization-based autonomous racing of 1:43 scale rc cars. Optim. Control Appl. Methods 36(5), 628 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Theodosis, P.A., Gerdes, J.C.: Generating a racing line for an autonomous racecar using professional driving techniques. In: ASME 2011 Dynamic Systems and Control Conference, Arlington (2011)

    Google Scholar 

  30. 30.

    Mühlmeier, M., Müller, N.: Optimization of the driving line on a race track (2002). SAE Technical Papers Series

  31. 31.

    Lockel, S., Peters, J., van Vliet, P.: A probabilistic framework for imitating human race driver behavior. IEEE Robot. Autom. Lett. 5(2), 2086–2093 (2020)

    Article  Google Scholar 

  32. 32.

    Prokop, G.: Modeling human vehicle driving by model predictive online optimization. Veh. Syst. Dyn. 35(1), 19–53 (2001)

    Article  Google Scholar 

  33. 33.

    Timings, J.P., Cole, D.J.: Efficient minimum manoeuvre time optimisation of an oversteering vehicle at constant forward speed. In: Proceedings of the 2011 American Control Conference, pp. 5267–5272 (2011)

    Chapter  Google Scholar 

  34. 34.

    Guiggiani, M.: The Science of Vehicle Dynamics: Handling, Braking, and Ride of Road and Race Cars. Springer, Berlin (2018)

    Book  Google Scholar 

  35. 35.

    Pacejka, H.: Tyre and Vehicle Dynamics. Tyre and Vehicle Dynamics. Butterworth-Heinemann, Oxford (2002)

    Google Scholar 

  36. 36.

    Oliphant, T.E.: Python for scientific computing. Comput. Sci. Eng. 9(3), 10–20 (2007)

    Article  Google Scholar 

  37. 37.

    Gillis, J., Diehl, M.: Hierarchical seeding for efficient sparsity pattern recovery in automatic differentiation. In: CSC14: The Sixth SIAM Workshop on Combinatorial Scientific Computing (2014)

    Google Scholar 

  38. 38.

    Gebremedhin, A.H., Manne, F., Pothen, A.: What color is your Jacobian? Graph coloring for computing derivatives. SIAM Rev. 47, 629–705 (2005)

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Griewank, A., Walther, A.: Evaluating Derivatives, 2nd edn. SIAM, Philadelphia (2008)

    MATH  Book  Google Scholar 

  40. 40.

    Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin (1995)

    MATH  Book  Google Scholar 

  41. 41.

    Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R.: Google Earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017)

    Article  Google Scholar 

  42. 42.

    Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartogr. 10, 112–122 (1973)

    Article  Google Scholar 

  43. 43.

    Abbott, E., Powell, D.: Land-vehicle navigation using GPS. Proc. IEEE 87(1), 145–162 (1999)

    Article  Google Scholar 

  44. 44.

    Nocedal, J., Wright, S.J.: Numerical Optimization. Operations Research and Financial Engineering. Springer, Berlin (2006)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Gabiccini.

Ethics declarations

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gabiccini, M., Bartali, L. & Guiggiani, M. Analysis of driving styles of a GP2 car via minimum lap-time direct trajectory optimization. Multibody Syst Dyn (2021). https://doi.org/10.1007/s11044-021-09789-7

Download citation

Keywords

  • Optimal trajectory planning
  • Minimum lap-time simulation
  • Driving style
  • Variable set-up parameters
  • Vehicle model
  • Race car