Skip to main content

An articulated spine and ribcage kinematic model for simulation of scoliosis deformities

Abstract

Musculoskeletal multibody modeling can offer valuable insight into aetiopathogenesis behind adolescent idiopathic scoliosis, which has remained unclear. However, the underlying model should represent anatomical joints with compatible kinematic constraints while allowing the model to attain scoliotic postures. This work presents an improved and kinematically determinate model including the whole spine and ribcage, which can attain typical scoliosis deformations of the thorax with compatible constraint strategy and simulate the interaction between all the bony segments of the ribcage and the spine. In the model, costovertebral/costotransverse joints were defined as universal joints based on reported anatomical studies. Articulations between ribs and the sternum were defined as spherical joints except in the ninth and tenth pairs, which have one additional anteroposterior degree-of-freedom. The model is controlled by 15 kinematic parameters, including spinal rhythms and parameters relating to clinical metrics of scoliosis. These input values were measured from the bi-planar radiographs of a 17-year-old scoliosis patient with a right main thoracic curve of 33° Cobb angle. Dependent kinematic variables with clinical relevance were selected for validation purposes and compared with measurements from radiographs. The average errors of rib-vertebra angles, rib-vertebra angle differences, and rib humps were 6.6° and 9.0°, and 6.3 mm. The model appeared to reproduce the spine and rib deformation pattern conforming to radiographs, results in simulating the rib prominence, rib spread, rib-vertebra angles, and sternum orientation, therefore supporting the constraint definitions. The model can subsequently be used to investigate the kinetics of scoliosis and contribute to uncovering the pathomechanism.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data Availability

After an internal review, the model will be made publicly available through https://doi.org/10.5281/zenodo.3932764.

Code Availability

The software to run the model is The AnyBody Modeling System, available from AnyBody Technology A/S, www.anybodytech.com.

References

  1. 1.

    Wong, C.: Mechanism of right thoracic adolescent idiopathic scoliosis at risk for progression; a unifying pathway of development by normal growth and imbalance. Scoliosis 10, 1–5 (2015). https://doi.org/10.1186/s13013-015-0030-2

    Article  Google Scholar 

  2. 2.

    Machida, M., Weinstein, S.L., Dubousset, J.: Pathogenesis of Idiopathic Scoliosis. Springer, Tokyo (2018)

    Book  Google Scholar 

  3. 3.

    Cheng, J.C., Castelein, R.M., Chu, W.C., Danielsson, A.J., Dobbs, M.B., Grivas, T.B., Gurnett, C.A., Luk, K.D., Moreau, A., Newton, P.O., Stokes, I.A., Weinstein, S.L., Burwell, R.G.: Adolescent idiopathic scoliosis. Nat. Rev. Dis. Primers 1, 15030 (2015). https://doi.org/10.1038/nrdp.2015.30

    Article  Google Scholar 

  4. 4.

    Scoliosis Research Society (SRS): (2021). https://www.srs.org/. Accessed 24 February 2021

  5. 5.

    Jalalian, A., Gibson, I., Tay, E.H.: Computational biomechanical modeling of scoliotic spine: challenges and opportunities. Spine Deform. 1, 401–411 (2013). https://doi.org/10.1016/j.jspd.2013.07.009

    Article  Google Scholar 

  6. 6.

    Villemure, I., Aubin, C.E., Dansereau, J., Labelle, H.: Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses. Eur. Spine J. 13, 83–90 (2004). https://doi.org/10.1007/s00586-003-0565-4

    Article  Google Scholar 

  7. 7.

    Driscoll, M., Mac-Thiong, J.M., Labelle, H., Parent, S.: Development of a detailed volumetric finite element model of the spine to simulate surgical correction of spinal deformities. BioMed Res. Int. 2013, 931741 (2013). https://doi.org/10.1155/2013/931741

    Article  Google Scholar 

  8. 8.

    Cahill, P.J., Wang, W., Asghar, J., Booker, R., Betz, R.R., Ramsey, C., Baran, G.: The use of a transition rod may prevent proximal junctional kyphosis in the thoracic spine after scoliosis surgery: a finite element analysis. Spine 37, 687–695 (2012). https://doi.org/10.1097/BRS.0b013e318246d4f2 (Phila. Pa. 1976)

    Article  Google Scholar 

  9. 9.

    Monteiro, N.M.B., da Silva, M.P.T., Folgado, J.O.M.G., Melancia, J.P.L.: Structural analysis of the intervertebral discs adjacent to an interbody fusion using multibody dynamics and finite element cosimulation. Multibody Syst. Dyn. 25, 245–270 (2011). https://doi.org/10.1007/s11044-010-9226-7

    Article  Google Scholar 

  10. 10.

    Stokes, I.A.F., Laible, J.P.: Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. J. Biomech. 23, 589–595 (1990). https://doi.org/10.1016/0021-9290(90)90051-4

    Article  Google Scholar 

  11. 11.

    Duke, K., Aubin, C.-E., Dansereau, J., Labelle, H.: Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation. Clin. Biomech. 20, 923–931 (2005). https://doi.org/10.1016/J.CLINBIOMECH.2005.05.006

    Article  Google Scholar 

  12. 12.

    Sevrain, A., Aubin, C.E., Gharbi, H., Wang, X., Labelle, H.: Biomechanical evaluation of predictive parameters of progression in adolescent isthmic spondylolisthesis: a computer modeling and simulation study. Scoliosis 7, 1–9 (2012). https://doi.org/10.1186/1748-7161-7-2

    Article  Google Scholar 

  13. 13.

    Solomonow, M., Zhou, B.-H., Harris, M., Lu, Y., Baratta, R.V.: The ligamento-muscular stabilizing system of the spine. Spine 23, 2552–2562 (1998). https://doi.org/10.1097/00007632-199812010-00010 (Phila. Pa. 1976)

    Article  Google Scholar 

  14. 14.

    du Rose, A., Breen, A.: Relationships between paraspinal muscle activity and lumbar inter-vertebral range of motion. Healthcare 4, 4 (2016). https://doi.org/10.3390/healthcare4010004

    Article  Google Scholar 

  15. 15.

    Rohlmann, A., Bauer, L., Zander, T., Bergmann, G., Wilke, H.J.: Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data. J. Biomech. 39, 981–989 (2006). https://doi.org/10.1016/j.jbiomech.2005.02.019

    Article  Google Scholar 

  16. 16.

    Wang, W., Baran, G.R., Betz, R.R., Samdani, A.F., Pahys, J.M., Cahill, P.J.: The use of finite element models to assist understanding and treatment for scoliosis: a review paper. Spine Deform. 2, 10–27 (2014). https://doi.org/10.1016/j.jspd.2013.09.007

    Article  Google Scholar 

  17. 17.

    Ezquerro, F., Simón, A., Prado, M., Pérez, A.: Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax-pelvis orientation. Med. Eng. Phys. 26, 11–22 (2004). https://doi.org/10.1016/S1350-4533(03)00128-0

    Article  Google Scholar 

  18. 18.

    Huynh, A.M., Aubin, C.E., Mathieu, P.A., Labelle, H.: Simulation of progressive spinal deformities in Duchenne muscular dystrophy using a biomechanical model integrating muscles and vertebral growth modulation. Clin. Biomech. 22, 392–399 (2007). https://doi.org/10.1016/j.clinbiomech.2006.11.010

    Article  Google Scholar 

  19. 19.

    Kamal, Z., Rouhi, G., Arjmand, N., Adeeb, S.: A stability-based model of a growing spine with adolescent idiopathic scoliosis: a combination of musculoskeletal and finite element approaches. Med. Eng. Phys. 64, 46–55 (2019). https://doi.org/10.1016/j.medengphy.2018.12.015

    Article  Google Scholar 

  20. 20.

    Shirazi-Adl, A., El-Rich, M., Pop, D.G., Parnianpour, M.: Spinal muscle forces, internal loads and stability in standing under various postures and loads—application of kinematics-based algorithm. Eur. Spine J. 14, 381–392 (2005). https://doi.org/10.1007/s00586-004-0779-0

    Article  Google Scholar 

  21. 21.

    Abouhossein, A., Weisse, B., Ferguson, S.J.: A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Comput. Methods Biomech. Biomed. Eng. 14, 527–537 (2011). https://doi.org/10.1080/10255842.2010.485568

    Article  Google Scholar 

  22. 22.

    Stokes, I.A.F., Gardner-Morse, M.: Lumbar spine maximum efforts and muscle recruitment patterns predicted by a model with multijoint muscles and joints with stiffness. J. Biomech. 28, 173–186 (1995). https://doi.org/10.1016/0021-9290(94)E0040-A

    Article  Google Scholar 

  23. 23.

    Galbusera, F., Wilke, H.-J., Brayda-Bruno, M., Costa, F., Fornari, M.: Influence of sagittal balance on spinal lumbar loads: a numerical approach. Clin. Biomech. 28, 370–377 (2013). https://doi.org/10.1016/J.CLINBIOMECH.2013.02.006

    Article  Google Scholar 

  24. 24.

    Raabe, M.E., Chaudhari, A.M.W.: An investigation of jogging biomechanics using the full-body lumbar spine model: model development and validation. J. Biomech. 49, 1238–1243 (2016). https://doi.org/10.1016/j.jbiomech.2016.02.046

    Article  Google Scholar 

  25. 25.

    Christophy, M., Adila, N., Senan, F., Lotz, J.C., Reilly, O.M.O.: A musculoskeletal model for the lumbar spine. Biomech. Model. Mechanobiol. 11, 19–34 (2012). https://doi.org/10.1007/s10237-011-0290-6

    Article  Google Scholar 

  26. 26.

    Arshad, R., Zander, T., Dreischarf, M., Schmidt, H.: Influence of lumbar spine rhythms and intra-abdominal pressure on spinal loads and trunk muscle forces during upper body inclination. Med. Eng. Phys. 38, 333–338 (2016). https://doi.org/10.1016/j.medengphy.2016.01.013

    Article  Google Scholar 

  27. 27.

    Christophy, M., Curtin, M., Faruk Senan, N.A., Lotz, J.C., O’Reilly, O.M.: On the modeling of the intervertebral joint in multibody models for the spine. Multibody Syst. Dyn. 30, 413–432 (2013). https://doi.org/10.1007/s11044-012-9331-x

    MathSciNet  Article  Google Scholar 

  28. 28.

    de Zee, M., Hansen, L., Wong, C., Rasmussen, J., Simonsen, E.B.: A generic detailed rigid-body lumbar spine model. J. Biomech. 40, 1219–1227 (2007). https://doi.org/10.1016/j.jbiomech.2006.05.030

    Article  Google Scholar 

  29. 29.

    Arjmand, N., Shirazi-Adl, A.: Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions. J. Biomech. 39, 510–521 (2006). https://doi.org/10.1016/J.JBIOMECH.2004.11.030

    Article  Google Scholar 

  30. 30.

    Jalalian, A., Tay, F.E.H., Arastehfar, S., Liu, G.: A patient-specific multibody kinematic model for representation of the scoliotic spine movement in frontal plane of the human body. Multibody Syst. Dyn. 39, 197–220 (2017). https://doi.org/10.1007/s11044-016-9556-1

    Article  Google Scholar 

  31. 31.

    Harrison, D.E., Colloca, C.J., Harrison, D.D., Janik, T.J., Haas, J.W., Keller, T.S.: Anterior thoracic posture increases thoracolumbar disc loading. Eur. Spine J. 14, 234–242 (2005). https://doi.org/10.1007/s00586-004-0734-0

    Article  Google Scholar 

  32. 32.

    Keller, T.S., Colloca, C.J., Harrison, D.E., Harrison, D.D., Janik, T.J.: Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: implications for the ideal spine. Spine J. 5, 297–309 (2005). https://doi.org/10.1016/j.spinee.2004.10.050

    Article  Google Scholar 

  33. 33.

    Briggs, A.M., van Dieën, J.H., Wrigley, T.V., Greig, A.M., Phillips, B., Lo, S.K., Bennell, K.L.: Thoracic kyphosis affects spinal loads and trunk muscle force. Phys. Ther. 87, 595–607 (2007). https://doi.org/10.2522/ptj.20060119

    Article  Google Scholar 

  34. 34.

    Watkins, R., Watkins, R., Williams, L., Ahlbrand, S., Garcia, R., Karamanian, A., Sharp, L., Vo, C., Hedman, T.: Stability provided by the sternum and rib cage in the thoracic spine. Spine 30, 1283–1286 (2005). https://doi.org/10.1097/01.brs.0000164257.69354.bb (Phila. Pa. 1976)

    Article  Google Scholar 

  35. 35.

    Brasiliense, L.B.C., Lazaro, B.C.R., Reyes, P.M., Dogan, S., Theodore, N., Crawford, N.R.: Biomechanical contribution of the rib cage to thoracic stability. Spine 36, E1686–E1693 (2011). https://doi.org/10.1097/BRS.0b013e318219ce84 (Phila. Pa. 1976)

    Article  Google Scholar 

  36. 36.

    Sham, M.L., Zander, T., Rohlmann, A., Bergmann, G.: Effects of the rib cage on thoracic spine flexibility/Einfluss des Brustkorbs auf die Flexibilität der Brustwirbelsäule. Biomed. Tech. Eng. 50, 361–365 (2005). https://doi.org/10.1515/BMT.2005.051

    Article  Google Scholar 

  37. 37.

    Bruno, A.G., Bouxsein, M.L., Anderson, D.E.: Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and rib cage. J. Biomech. Eng. 137, 081003 (2015). https://doi.org/10.1115/1.4030408

    Article  Google Scholar 

  38. 38.

    Ignasiak, D., Dendorfer, S., Ferguson, S.J.: Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading. J. Biomech. 49, 959–966 (2016). https://doi.org/10.1016/j.jbiomech.2015.10.010

    Article  Google Scholar 

  39. 39.

    Bayoglu, R., Galibarov, P.E., Verdonschot, N., Koopman, B., Homminga, J.: Twente Spine Model: a thorough investigation of the spinal loads in a complete and coherent musculoskeletal model of the human spine. Med. Eng. Phys. 68, 35–45 (2019). https://doi.org/10.1016/j.medengphy.2019.03.015

    Article  Google Scholar 

  40. 40.

    Higuchi, R., Komatsu, A., Iida, J., Iwami, T., Shimada, Y.: Construction and validation under dynamic conditions of a novel thoracolumbar spine model with defined muscle paths using the wrapping method. J. Biomech. Sci. Eng. (2019). https://doi.org/10.1299/jbse.18-00432

    Article  Google Scholar 

  41. 41.

    Damsgaard, M., Rasmussen, J., Christensen, S.T., Surma, E., de Zee, M.: Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul. Model. Pract. Theory 14, 1100–1111 (2006). https://doi.org/10.1016/j.simpat.2006.09.001

    Article  Google Scholar 

  42. 42.

    Nikravesh, P.E.: Planar Multibody Dynamics: Formulation, Programming and Applications. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  43. 43.

    de Zee, M., Falla, D., Farina, D., Rasmussen, J.: A detailed rigid-body cervical spine model based on inverse dynamics. J. Biomech. 40, S284 (2007). https://doi.org/10.1016/S0021-9290(07)70280-4

    Article  Google Scholar 

  44. 44.

    Pearcy, M.J., Bogduk, N.: Instantaneous axes of rotation of the lumbar intervertebral joints. Spine 13, 1033–1041 (1988). https://doi.org/10.1097/00007632-198809000-00011 (Phila. Pa. 1976)

    Article  Google Scholar 

  45. 45.

    Lemosse, D., Le Rue, O., Diop, A., Skalli, W., Marec, P., Lavaste, F.: Characterization of the mechanical behaviour parameters of the costo-vertebral joint. Eur. Spine J. 7, 16–23 (1998). https://doi.org/10.1007/s005860050021

    Article  Google Scholar 

  46. 46.

    Duprey, S., Subit, D., Guillemot, H., Kent, R.W.: Biomechanical properties of the costovertebral joint. Med. Eng. Phys. 32, 222–227 (2010). https://doi.org/10.1016/j.medengphy.2009.12.001

    Article  Google Scholar 

  47. 47.

    Beyer, B., Sholukha, V., Dugailly, P.M., Rooze, M., Moiseev, F., Feipel, V., Van Sint Jan, S.: In vivo thorax 3D modelling from costovertebral joint complex kinematics. Clin. Biomech. 29, 434–438 (2014). https://doi.org/10.1016/j.clinbiomech.2014.01.007

    Article  Google Scholar 

  48. 48.

    Grellmann, W., Berghaus, A., Haberland, E.-J., Jamali, Y., Holweg, K., Reincke, K., Bierögel, C.: Determination of strength and deformation behavior of human cartilage for the definition of significant parameters. J. Biomed. Mater. Res., Part A 78A, 168–174 (2006). https://doi.org/10.1002/jbm.a.30625

    Article  Google Scholar 

  49. 49.

    Mayer, O.H., Harris, J.A., Balasubramanian, S., Shah, S.A., Campbell, R.M.: A comprehensive review of thoracic deformity parameters in scoliosis. Eur. Spine J. 23, 2594–2602 (2014). https://doi.org/10.1007/s00586-014-3580-8

    Article  Google Scholar 

  50. 50.

    Qiu, Y., Mao, S., Wang, B., Liu, Z., Zhu, F., Zhu, Z.: Clinical evaluation of the anterior chest wall deformity in thoracic adolescent idiopathic scoliosis. Spine 37, E540–E548 (2011). https://doi.org/10.1097/brs.0b013e31823a05e6 (Phila. Pa. 1976)

    Article  Google Scholar 

  51. 51.

    Kuklo, T.R., Potter, B.K., Lenke, L.G.: Vertebral rotation and thoracic torsion in adolescent idiopathic scoliosis. J. Spinal Disord. Tech. 18, 139–147 (2005). https://doi.org/10.1097/01.bsd.0000159033.89623.bc

    Article  Google Scholar 

  52. 52.

    Takahashi, S., Suzuki, N., Asazuma, T., Kono, K., Ono, T., Toyama, Y.: Factors of thoracic cage deformity that affect pulmonary function in adolescent idiopathic thoracic scoliosis. Spine 32, 106–112 (2007). https://doi.org/10.1097/01.brs.0000251005.31255.25 (Phila. Pa. 1976)

    Article  Google Scholar 

  53. 53.

    Easwar, T.R., Hong, J.Y., Yang, J.H., Suh, S.W., Modi, H.N.: Does lateral vertebral translation correspond to Cobb angle and relate in the same way to axial vertebral rotation and rib hump index? A radiographic analysis on idiopathic scoliosis. Eur. Spine J. 20, 1095–1105 (2011). https://doi.org/10.1007/s00586-011-1702-0

    Article  Google Scholar 

  54. 54.

    Oskouian, R.J., Shaffrey, C.I.: Degenerative lumbar scoliosis. Neurosurg. Clin. N. Am. 17, 299–315 (2006). https://doi.org/10.1016/j.nec.2006.05.002

    Article  Google Scholar 

  55. 55.

    Vergari, C., Aubert, B., Lallemant-Dudek, P., Haen, T.X., Skalli, W.: A novel method of anatomical landmark selection for rib cage 3D reconstruction from biplanar radiography. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. (2018). https://doi.org/10.1080/21681163.2018.1537860

    Article  Google Scholar 

  56. 56.

    Chi, W., Cheng, C., Yeh, W., Chuang, S., Chang, T., Chen, J.: Vertebral axial rotation measurement method. Comput. Methods Programs Biomed. 1, 8–17 (2005). https://doi.org/10.1016/j.cmpb.2005.10.004

    Article  Google Scholar 

  57. 57.

    Mehta, M.H.: The rib-vertebra angle in the early diagnosis between resolving and progressive infantile scoliosis. J. Bone Jt. Surg. Br. 54–B, 230–243 (1972). https://doi.org/10.1302/0301-620X.54B2.230

    Article  Google Scholar 

  58. 58.

    Sevastik, B., Xiong, B., Sevastik, J., Lindgren, U., Willers, U.: The rib vertebral angle asymmetry in idiopathic, neuromuscular and experimentally induced scoliosis. Stud. Health Technol. Inform. 37, 107–110 (1997). https://doi.org/10.3233/978-1-60750-881-6-107

    Article  Google Scholar 

  59. 59.

    Lee, D.: Biomechanics of the thorax: a clinical model of in vivo function. J. Man. Manip. Ther. 1, 13–21 (1993). https://doi.org/10.1179/106698193791069771

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. [764644].

Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. [764644].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamed Shayestehpour.

Ethics declarations

Conflicts of interest/Competing interests

John Rasmussen owns stock and is a board member of AnyBody Technology A/S, whose software is used for model development.

Pavel Galibarov is employed in AnyBody Technology A/S.

Ethics approval, Consent to participate, Consent for publication

This study was evaluated and approved by the local Research Ethics Committee (Journal number: H17034237). We obtained oral and written consent from the patient, and the study was conducted according to national guidelines and the Helsinki Declaration.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shayestehpour, H., Rasmussen, J., Galibarov, P. et al. An articulated spine and ribcage kinematic model for simulation of scoliosis deformities. Multibody Syst Dyn 53, 115–134 (2021). https://doi.org/10.1007/s11044-021-09787-9

Download citation

Keywords

  • Thoracolumbar spine
  • Multibody modeling
  • Ribcage kinematics
  • Compatible joint definition
  • Scoliosis
  • AnyBody