Skip to main content
Log in

A general formulation for the contact between superellipsoid surfaces and nodal points

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The superellipsoids, part of the family of superquadratics, have geometric and mathematical properties that not only make them suitable for the representation of solids, ranging from spheres to relatively thin sheets, but also allow describing a very broad number of complex geometries. Their mathematical description favors a very efficient numerical treatment, in particular when used in the context of contact mechanics. Here, the contact between superellipsoids and nodal meshes, such as those used in finite elements, is analyzed. Based on the analytical properties of the implicit form of the superellipsoid equations, defined in a local coordinate frame, all the quantities necessary to handle a contact problem are derived. Recognizing that one of the most expensive tasks in contact mechanics is the contact detection, a three-stage contact search strategy is envisaged and implemented. Only in the close proximity between a node and the superellipsoid is a detailed contact search performed. In case of contact, the contact forces and their application points are evaluated using a continuous contact force model based on a penalty formulation. The existence of friction forces is considered. The methods developed and implemented for the contact between superellipsoids and nodal meshes are demonstrated and discussed with two contact scenarios comprising the impact of a superellipsoid on a hanging ‘towel’, and the contact of several superellipsoids with a flexible elastic platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ambrósio, J., Pombo, J.: A unified formulation for mechanical joints with and without clearances/bushings and/or stops in the framework of multibody systems. Multibody Syst. Dyn. 42(3), 317–345 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Anand, V.B.: Computer Graphics and Geometric Modeling for Engineers. John Wiley and Sons, New York (1993)

    Google Scholar 

  3. Barr, A.H.: Superquadrics and angle-preserving transformations. IEEE Comput. Graph. Appl. 1(1), 11–23 (1981)

    MathSciNet  Google Scholar 

  4. Blumentals, A., Brogliato, B., Bertails-Descoubes, F.: The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorial. Multibody Syst. Dyn. 38(1), 43–76 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Boissonnat, J.D., Teillaud, M.: Effective Computational Geometry for Curves and Surfaces. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  6. Brogliato, B.: Kinetic quasi-velocities in unilaterally constrained Lagrangian mechanics with impacts and friction. Multibody Syst. Dyn. 32(2), 175–216 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Carvalho, M., Milho, J., Ambrosio, J., Ramos, N.: Railway occupant passive safety improvement by optimal design. Int. J. Crashworthiness 22(6), 624–634 (2017)

    Google Scholar 

  8. Choi, J., Ryu, H.S., Kim, C.W.: An efficient and robust contact algorithm for a compliant contact force model between bodies of complex geometry. Multibody Syst. Dyn. 23(1), 99–120 (2010)

    MATH  Google Scholar 

  9. Eberhard, P. (ed.): IUTAM Symposium on Multiscale Problems in Multibody System Contacts Springer, Dordrecht (2006)

    Google Scholar 

  10. Ebrahimi, S., Eberhard, P.: Aspects of contact problems in computational multibody dynamics. In: Garcıa Orden, J.C., Goicolea, J.M., Cuadrado, J. (eds.) Multibody Dynamics. Computational Methods and Applications, pp. 23–47. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  11. Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24(1), 103–122 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24(1), 103–122 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Flores, P., Piment, J.C., Ambrósio, C.J., Lankarani, H.M.: Planar joints with clearance: dry contact models. In: Lecture Notes in Applied and Computational Mechanics., vol. 34, pp. 67–100 (2008)

    Google Scholar 

  14. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23(2), 165–190 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Gear, C.: The numerical integration of ordinary differential equations of various orders. Math. Comput. 21(98), 146–156 (1967)

    MATH  Google Scholar 

  16. Gear, C.W., Petzold, L.: ODE methods for the solutions of differential/algebraic equations. SIAM J. Numer. Anal. 21(4), 716–728 (1984)

    MathSciNet  MATH  Google Scholar 

  17. Gonthier, Y., McPhee, J., Lange, C., Piedbœuf, J.-C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11(3), 209–233 (2004)

    MATH  Google Scholar 

  18. Hippmann, G.: An algorithm for compliant contact between complexly shaped bodies. Multibody Syst. Dyn. 12(4), 345–362 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Iglesias Ibáñez, D., García Orden, J.C.: Galerkin meshfree methods applied to the nonlinear dynamics of flexible multibody systems. Multibody Syst. Dyn. 25(2), 203–224 (2011)

    MathSciNet  Google Scholar 

  20. Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5(2), 193–207 (1994)

    Google Scholar 

  21. Lopes, D.S., Silva, M.T., Ambrósio, J.A., Flores, P.: A mathematical framework for rigid contact detection between quadric and superquadric surfaces. Multibody Syst. Dyn. 24(3), 255–280 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Lopes, D.S., Neptune, R.R., Gonçalves, A.A., Ambrósio, J.A., Silva, M.T.: Shape analysis of the femoral head: a comparative study between spherical, (super)ellipsoidal, and (super)ovoidal shapes. J. Biomech. Eng. 137(11), 114504 (2015)

    Google Scholar 

  23. Lopes, D.S., Neptune, R.R., Ambrósio, J.A., Silva, M.T.: A superellipsoid-plane model for simulating foot-ground contact during human gait. Comput. Methods Biomech. Biomed. Eng. 19(9), 954–963 (2016)

    Google Scholar 

  24. Machado, M., Flores, P., Ambrósio, J.: A lookup-table-based approach for spatial analysis of contact problems. J. Comput. Nonlinear Dyn. 9(4), 041010 (2014)

    Google Scholar 

  25. Machado, M., Flores, P., Ambrósio, J.: Techniques for geometrical detection of contact within multibody systems. In: Mechanisms and Machine Science, vol. 24, pp. 471–478 (2015)

    Google Scholar 

  26. Magalhães, H., Marques, F., Liu, B., Antunes, P., Pombo, J., Ambrosio, J., Piotrowski, J., Bruni, S.: Implementation of a non-Hertzian contact model for railway dynamic application. Multibody Syst. Dyn. 48(1), 41–78 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Marques, F., Flores, P., Claro, J.C., Lankarani, H.: Modeling and analysis of friction including rolling effects in multibody dynamics: a review. Multibody Syst. Dyn. 45(2), 223–244 (2019)

    MathSciNet  Google Scholar 

  28. Mazhar, H., Heyn, T., Negrut, D.: A scalable parallel method for large collision detection problems. Multibody Syst. Dyn. 26(1), 37–55 (2011)

    MATH  Google Scholar 

  29. Mortenson, M.E.: Geometric Modeling, 3rd edn. Industrial Press, New York (2006)

    Google Scholar 

  30. Neto, M.A., Ambrósio, J.A.C., Leal, R.P.: Composite materials in flexible multibody systems. In: ECCOMAS 2004 - European Congress on Computational Methods in Applied Sciences and Engineering (2004)

    Google Scholar 

  31. Pereira, C.M., Ramalho, A.L., Ambrósio, J.A.: A critical overview of internal and external cylinder contact force models. Nonlinear Dyn. 63(4), 681–697 (2011)

    Google Scholar 

  32. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, Weinheim (1996)

    MATH  Google Scholar 

  33. Pombo, J., Ambrósio, J., Silva, M.: A new wheel-rail contact model for railway dynamics. Veh. Syst. Dyn. 45(2), 165–189 (2007)

    Google Scholar 

  34. Refachinho de Campos, P.R., Gay Neto, A.: Rigid body formulation in a finite element context with contact interaction. Comput. Mech. 62, 1369–1398 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Rong, B., Rui, X., Tao, L., Guoping, W.: Theoretical modeling and numerical solution methods for flexible multibody system dynamics. Nonlinear Dyn. 98, 1519–1553 (2019)

    Google Scholar 

  36. Schörgenhumer, M., Gruber, P.G., Gerstmayr, J.: Interaction of flexible multibody systems with fluids analyzed by means of smoothed particle hydrodynamics. Multibody Syst. Dyn. 30(1), 53–76 (2013)

    MathSciNet  Google Scholar 

  37. Shan, M., Guo, J., Gill, E.: An analysis of the flexibility modeling of a net for space debris removal. Adv. Space Res. 65(3), 1083–1094 (2020)

    Google Scholar 

  38. Shi, J., Liu, Z., Hong, J.: Dynamic contact model of shell for multibody system applications. Multibody Syst. Dyn. 44(4), 335–366 (2018)

    MathSciNet  MATH  Google Scholar 

  39. TASS International Software: MADYMO Reference Manual Version 7.7. Edited by TASS International. Helmond, the Netherlands (2017)

  40. Tessler, A., Sleight, D.W., Wang, J.T.: Effective modeling and nonlinear shell analysis of thin membranes exhibiting structural wrinkling. J. Spacecr. Rockets 42(2), 287–298 (2005)

    Google Scholar 

  41. Wellmann, C., Lillie, C., Wriggers, P.: A contact detection algorithm for superellipsoids based on the common-normal concept. Eng. Comput. 25(5), 432–442 (2008)

    MATH  Google Scholar 

  42. Wriggers, P.: Computational Contact Mechanics. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  43. Yao, T., Wang, L., Liu, X., Huang, Y.: Multibody dynamics simulation of thin-walled four-point contact ball bearing with interactions of balls, ring raceways and crown-type cage. Multibody Syst. Dyn. 48, 337–372 (2019). 2020

    MathSciNet  MATH  Google Scholar 

  44. Zhao, S., Zhao, J.: A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media. Int. J. Numer. Anal. Methods Geomech. 43(13), 2147–2169 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Portuguese Foundation for Science and Technology (FCTFundação para a Ciência e Tecnologia) through IDMEC, under LAETA project UIDB/50022/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Ambrósio.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrósio, J. A general formulation for the contact between superellipsoid surfaces and nodal points. Multibody Syst Dyn 50, 415–434 (2020). https://doi.org/10.1007/s11044-020-09744-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09744-y

Keywords

Navigation