Skip to main content
Log in

Dynamic modeling for foldable origami space membrane structure with contact-impact during deployment

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The dynamic modeling for the foldable origami space membrane structure considering contact-impact during the deployment is studied in this paper. The membrane is discretized using the triangular elements of the Absolute Nodal Coordinate Formulation (ANCF), and the stress–strain relationship of the membrane is determined based on the Stiffness Reduction Model (SRM). A mixed method is proposed for the frictionless contact problem by combining the membrane surface-to-surface (STS) contact elements with the membrane node-to-surface (NTS) contact elements to improve precision. Compared with the traditional STS contact elements, the mixed method can effectively avoid mutual penetration of the element boundaries, especially for the foldable origami membrane structures undergoing overall motions. The penalty method is adopted to enforce the nonpenetration condition. Moreover, special constraints are built for the fold lines, and then the dynamic equations of the membrane multibody system considering the damping effect are formulated. The dynamic deployment procedure of a leaf-in origami membrane structure with contact-impact is performed employing this present mixed method. The results demonstrate the effectiveness and superiority of the presented mixed method in the solution of the complicated contact problem, and the influence of the contact-impact on the dynamic performance is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liu, Z.-Q., Qiu, H., Li, X., Yang, S.-L.: Review of large spacecraft deployable membrane antenna structures. Chin. J. Mech. Eng. 30(6), 1447–1459 (2017)

    Google Scholar 

  2. Leipold, M., Eiden, M., Garner, C.E., Herbeck, L., Kassing, D., Niederstadt, T., Krüger, T., Pagel, G., Rezazad, M., Rozemeijer, H., Seboldt, W., Schöppinger, C., Sickinger, C., Unckenbold, W.: Solar sail technology development and demonstration. Acta Astronaut. 52(2), 317–326 (2003)

    Google Scholar 

  3. Peraza Hernandez, E.A., Hartl, D.J., Lagoudas, D.C.: Active Origami: Modeling, Design, and Applications. Springer, Cham (2018)

    MATH  Google Scholar 

  4. Seefeldt, P., Spietz, P., Spröwitz, T.: The preliminary design of the GOSSAMER-1 solar sail membrane and manufacturing strategies. In: Macdonald, M. (ed.) Advances in Solar Sailing, pp. 133–151. Springer, Berlin (2014)

    Google Scholar 

  5. Cai, J., Ren, Z., Ding, Y., Deng, X., Xu, Y., Feng, J.: Deployment simulation of foldable origami membrane structures. Aerosp. Sci. Technol. 67, 343–353 (2017)

    Google Scholar 

  6. De Focatiis, D.S.A., Guest, S.D.: Deployable membranes designed from folding tree leaves. Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci. 360(1791), 227–238 (2002)

    Google Scholar 

  7. Nakano, T., Mori, O., Kawaguchi, J.I., Stability of spinning solar sail-craft containing a huge membrane. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California (2005)

    Google Scholar 

  8. Nishimaki, S.: Stability and control response of spinning solar sail-craft containing a huge membrane. In: 57th International Astronautical Congress, 2006, Valencia, Spain (2006)

    Google Scholar 

  9. Shirasawa, Y., Mori, O., Miyazaki, Y., Sakamoto, H., Hasome, M., Okuizumi, N., Sawada, H., Furuya, H., Matsunaga, S., Natori, M.: Analysis of membrane dynamics using multi-particle model for solar sail demonstrator” IKAROS”. In: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, USA (2011)

    Google Scholar 

  10. Yan, X., Fu-ling, G.: Fold methods and deployment analysis of deployable membrane structure. Eng. Mech. 25(5), 176–181 (2008)

    Google Scholar 

  11. Shabana, A.A.: Review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Shabana, A.A., Hussien, H.A., Escalona, J.L.: Application of the absolute nodal coordinate formulation to large rotation and large deformation problems. J. Mech. Des. 120(2), 188–195 (1998)

    Google Scholar 

  13. Dmitrochenko, O., Mikkola, A.: Two simple triangular plate elements based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 3(4), 041012 (2008)

    Google Scholar 

  14. Wong, Y.W., Pellegrino, S.: Wrinkled membranes. Part I: experiments. J. Mech. Mater. Struct. 1(1), 1–23 (2006)

    Google Scholar 

  15. Stein, M., Hedgepeth, J.M.: Analysis of partly wrinkled membranes. In: NASA TN D-813, pp. 1–23. National Aeronautics and Space Administration, Washington (1961)

    Google Scholar 

  16. Miyazaki, Y.: Dynamic analysis of deployable cable-membrane structures with slackening members. In: Proceedings of 21st International Symposium on Space Technology and Science, Omiya (1998)

    Google Scholar 

  17. Miyazaki, Y.: Wrinkle/slack model and finite element dynamics of membrane. Int. J. Numer. Methods Biomed. Eng. 66, 1179–1209 (2006)

    MATH  Google Scholar 

  18. Cannella, F., Dimperio, M., Canali, C., Rahman, N., Chen, F., Catelani, D., Caldwell, D.G., Dai, J.S.: Origami carton folding analysis using flexible panels. In: Advances in Reconfigurable Mechanisms and Robots II, Cham, pp. 95–106 (2016)

    Google Scholar 

  19. Liu, C., Tian, Q., Yan, D., Hu, H.: Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Comput. Methods Appl. Mech. Eng. 258, 81–95 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Miguel, E., Tamstorf, R., Bradley, D., Schvartzman, S.C., Thomaszewski, B., Bickel, B., Matusik, W., Marschner, S., Otaduy, M.A.: Modeling and estimation of internal friction in cloth. ACM Trans. Graph. 32(6), 212 (2013)

    Google Scholar 

  21. Zhu, T.: Contact/collision dynamics of space membrane structures described by Absolute Nodal Coordinate Formulation. In: The Chinese Congress of Theoretical and Applied Mechanics, Shanghai, China (2015)

    Google Scholar 

  22. Dmitrochenko, O.N., Pogorelov, D.Y.: Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody Syst. Dyn. 10(1), 17–43 (2003)

    MATH  Google Scholar 

  23. Hammer, P.C., Stroud, A.H.: Numerical integration over simplexes and cones. Math. Tables Other Aids Comput. 10(55), 130–137 (1956)

    MathSciNet  MATH  Google Scholar 

  24. Specht, B.: Modified shape functions for the three-node plate bending element passing the patch test. Int. J. Numer. Methods Biomed. Eng. 26(3), 705–715 (1988)

    MATH  Google Scholar 

  25. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vol. 2. Butterworth, London (2000)

    MATH  Google Scholar 

  26. Zhao, J., Tian, Q., Hu, H.: Modal analysis of a rotating thin plate via absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 6(4), 041013 (2011)

    Google Scholar 

  27. Konyukhov, A., Izi, R.: Introduction to Computational Contact Mechanics: A Geometrical Approach. Wiley Series in Computational Mechanics. Wiley, New York (2015)

    MATH  Google Scholar 

  28. Konyukhov, A., Schweizerhof, K.: Contact formulation via a velocity description allowing efficiency improvements in frictionless contact analysis. Comput. Mech. 33(3), 165–173 (2004)

    MATH  Google Scholar 

  29. Lee, J.W., Kim, H.W., Ku, H.C., Yoo, W.S.: Comparison of external damping models in a large deformation problem. J. Sound Vib. 325(4), 722–741 (2009)

    Google Scholar 

  30. Yoo, W.-S., Lee, J.-H., Park, S.-J., Sohn, J.-H., Dmitrochenko, O., Pogorelov, D.: Large oscillations of a thin cantilever beam: physical experiments and simulation using the absolute nodal coordinate formulation. Nonlinear Dyn. 34(1), 3–29 (2003)

    MATH  Google Scholar 

  31. Shi, J., Liu, Z., Hong, J.: Dynamic contact model of shell for multibody system applications. Multibody Syst. Dyn. 44(4), 335–366 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Macdonald, M.: Advances in Solar Sailing. Springer, Berlin (2014)

    Google Scholar 

Download references

Acknowledgements

This research was supported by General Program (Nos. 11772186, 11772188) of the National Natural Science Foundation of China and the Key Program (No. 11932001) of the National Natural Science Foundation of China, for which the authors are grateful. This research was also supported by the Key Laboratory of Hydrodynamics (Ministry of Education).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyang Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, T., Liu, Z., Zhou, Y. et al. Dynamic modeling for foldable origami space membrane structure with contact-impact during deployment. Multibody Syst Dyn 50, 1–24 (2020). https://doi.org/10.1007/s11044-020-09737-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09737-x

Keywords

Navigation