Skip to main content
Log in

A compact form dynamics controller for a high-DOF tetrapod-on-wheel robot with one manipulator via null space based convex optimization and compatible impedance controllers

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper develops a compact form dynamics controller to generate multi-compliant behaviors for a new designed tetrapod-on-wheel robot with one manipulator. The whole-body compliant torque controller is stated through one null-space-based convex optimization and compatible null-space-based impedance controllers. Different from fixed contact points of conventional quadruped robots, the kinematic wheel contact constraints are derived for our legged-on-wheel robot, which serves as the basis for each task reference extraction and each compliance controller. The compact relationships between task references and optimization control variables are extracted using null-space-based inverse dynamics, which is used to build the cost function in the operational space and/or in the joint space. The whole-body control frame is developed and several null-space-based feed-back impedance controllers are integrated into the compact relationships to allow the robot to achieve compliance and compensate the model impreciseness, especially the wheel contact model. Then the detailed algorithm is presented whose output combines the feed-forward and feedback torque. The validation of our approach is performed via advanced numerical simulations for a virtual legged-on-wheel robot with one manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khatib, O.: A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)

    Article  Google Scholar 

  2. Sentis, L., Khatib, O.: Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int. J. Humanoid Robot. 2(04), 505–518 (2005)

    Article  Google Scholar 

  3. Bouyarmane, K., Kheddar, A.: Using a multi-objective controller to synthesize simulated humanoid robot motion with changing contact configurations. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pp. 4414–4419, IEEE, New York (2011)

    Chapter  Google Scholar 

  4. Salini, J., Padois, V., Bidaud, P.: Synthesis of complex humanoid whole-body behavior: a focus on sequencing and tasks transitions. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on, pp. 1283–1290, IEEE, New York (2011)

    Chapter  Google Scholar 

  5. Ponce, O.E.R.: Generation of the whole-body motion for humanoid robots with the complete dynamics. Universite Toulouse III Paul Sabatier (2014)

  6. Kanoun, O., Lamiraux, F., Wieber, P.B.: Kinematic control of redundant manipulators: generalizing the task priority framework to inequality tasks. IEEE Trans. Robot. 27(4), 785–792 (2011)

    Article  Google Scholar 

  7. De Lasa, M., Mordatch, I., Hertzmann, A.: Feature-based locomotion controllers. ACM Trans. Graph. 29(4), 131 (2010)

    Google Scholar 

  8. Escande, A., Mansard, N., Wieber, P.B.: Hierarchical quadratic programming: fast online humanoid-robot motion generation. Int. J. Robot. Res. 33(7), 1006–1028 (2014)

    Article  Google Scholar 

  9. Wensing, P.M.: Optimization and control of dynamic humanoid running and jumping. The Ohio State University (2014)

  10. Wensing, P.M., Orin, D.E.: Generation of dynamic humanoid behaviors through task-space control with conic optimization. In: Robotics and Automation (ICRA), 2013 IEEE International Conference on, pp. 3103–3109, IEEE, New York (2013)

    Chapter  Google Scholar 

  11. Mastalli, C., Havoutis, I., Focchi, M., et al.: Hierarchical planning of dynamic movements without scheduled contact sequences. In: Robotics and Automation (ICRA), 2016 IEEE International Conference on, pp. 4636–4641, IEEE, New York (2016)

    Chapter  Google Scholar 

  12. Focchi, M., Del Prete, A., Havoutis, I., et al.: High-slope terrain locomotion for torque-controlled quadruped robots. Auton. Robots 41(1), 259–272 (2017)

    Article  Google Scholar 

  13. Sentis, L.: Synthesis and control of whole-body behaviors in humanoid systems. Stanford University (2007)

  14. Righetti, L., Buchli, J., Mistry, M., et al.: Inverse dynamics control of floating-base robots with external constraints: a unified view. In: Robotics and Automation (ICRA), 2011 IEEE International Conference on, pp. 1085–1090. IEEE, New York (2011)

    Chapter  Google Scholar 

  15. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, New York (2014)

    MATH  Google Scholar 

  16. Park, J., Khatib, O.: Contact consistent control framework for humanoid robots. In: ICRA 2006. Proceedings 2006 IEEE International Conference on Robotics and Automation, pp. 1963–1969. IEEE, New York (2006)

    Chapter  Google Scholar 

  17. Bellicoso, C.D., Gehring, C., Hwangbo, J., et al.: Perception-less terrain adaptation through whole body control and hierarchical optimization. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 558–564. IEEE, New York (2016)

    Chapter  Google Scholar 

  18. Semini, C., Barasuol, V., Goldsmith, J., et al.: Design of the hydraulically actuated, torque-controlled quadruped robot hyq2max. IEEE/ASME Trans. Mechatron. 22(2), 635–646 (2017)

    Article  Google Scholar 

  19. Smits, R.K.D.: Kinematics and Dynamics Library. http://www.orocos.org/kdl

  20. Ferreau, H.J., Kirches, C., Potschka, A., et al.: qpOASES: a parametric active-set algorithm for quadratic programming. Math. Program. Comput. 6(4), 327–363 (2014)

    Article  MathSciNet  Google Scholar 

  21. Walker, M.W., Orin, D.E.: Efficient dynamic computer simulation of robotic mechanisms. J. Dyn. Syst. Meas. Control 104(3), 205–211 (1982)

    Article  Google Scholar 

  22. Wenqian, D., Mohamed, F., Faïz, B.: Rolling based Locomotion on rough Terrain for a Wheeled Quadruped Using Centroidal Dynamics. (Submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqian Du.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Benamar, F. A compact form dynamics controller for a high-DOF tetrapod-on-wheel robot with one manipulator via null space based convex optimization and compatible impedance controllers. Multibody Syst Dyn 49, 447–463 (2020). https://doi.org/10.1007/s11044-020-09728-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09728-y

Keywords

Navigation