Skip to main content
Log in

Modelling and simulation of coupled multibody systems and granular media using the non-smooth contact dynamics approach

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Multibody models are often coupled with other domains in order to enlarge the scope of computer-based analysis. In particular, modeling multibody systems (MBSs) in interaction with granular media is of great interest for industrial process such as railway track maintenance, handling of aggregates, etc. This paper presents a strong coupling methodology for unifying a multibody formalism using relative coordinates and a discrete element method based on non-smooth contact dynamics (NSCD). Both tree-like and closed-loop MBSs are considered. For the latter, the coordinate partitioning techniques is applied in the NSCD framework. The proposed approach is applied on the slider–crank mechanism benchmark. Results are in very good agreement with results obtained with other techniques from the literature. Finally, a multibody model of a tamping machine is coupled to a discrete element model of railway ballast in order to analyse efficiency of track maintenance. This application demonstrates that the dynamics of the machine must be taken into account so as to estimate the performance of the maintenance process correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. https://git-xen.lmgc.univ-montp2.fr/lmgc90/lmgc90_user.

  2. http://www.robotran.eu.

  3. Simulations are performed on a Dual Intel Xeon Processor E5-2637v3 (4C HT, 15MBCache, 3.5GHzTurbo).

References

  1. Cundall, P., Strack, O.: Discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  2. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications. CISM, Courses and Lectures, vol. 302, pp. 1–82. Springer Verlag, Wien–New York (1988).

    Chapter  Google Scholar 

  3. Moreau, J.J.: Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A, Solids 13(4 - suppl), 93–114 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Moreau, J.J.: Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng. 7825(177), 329–349 (1999)

    Article  MathSciNet  Google Scholar 

  5. Jean, M.: The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177, 235–257 (1999). https://doi.org/10.1016/S0045-7825(98)00383-1

    Article  MathSciNet  MATH  Google Scholar 

  6. Saussine, G., Cholet, C., Gautier, P.E., Dubois, F., Bohatier, C., Moreau, J.J.: Modelling ballast behaviour under dynamic loading. Part 1: A 2d polygonal discrete element method approach. Comput. Methods Appl. Mech. Eng. 195, 2841–2859 (2006). https://doi.org/10.1016/j.cma.2005.07.006

    Article  MATH  Google Scholar 

  7. Saussine, G., Azéma, E., Gautier, P., Peyroux, R., Radjai, F.: Numerical modeling of the tamping operation by discrete element approach, pp. 1–9. World Congress Rail Research, South Korea (2008)

    Google Scholar 

  8. Glocker, C., Pfeiffer, F.: Dynamical systems with unilateral contacts. Nonlinear Dyn. 3(4), 245–259 (1992). https://doi.org/10.1007/BF00045484

    Article  Google Scholar 

  9. Wehage, R.A., Haug, E.J.: Dynamic analysis of mechanical systems with intermittent motion. J. Mech. Des. 104(4), 778–784 (1982). https://doi.org/10.1115/1.3256436

    Article  Google Scholar 

  10. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-75392-6

    Book  MATH  Google Scholar 

  11. Akhadkar, N., Acary, V., Brogliato, B.: Multibody systems with 3D revolute joints with clearances: an industrial case study with an experimental validation. Multibody Syst. Dyn. 42(3), 249–282 (2018). https://doi.org/10.1007/s11044-017-9584-5

    Article  MATH  Google Scholar 

  12. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23(2), 165–190 (2010). https://doi.org/10.1007/s11044-009-9178-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Q.Z., Acary, V., Virlez, G., Brüls, O.: A nonsmooth generalized-alpha scheme for flexible multibody systems with unilateral constraints. Int. J. Numer. Methods Eng. 96(8), 487–511 (2013). https://doi.org/10.1002/nme.4563

    Article  MATH  Google Scholar 

  14. Acary, V.: Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction. Comput. Methods Appl. Mech. Eng. 256(0), 224–250 (2013). https://doi.org/10.1016/j.cma.2012.12.012

    Article  MathSciNet  MATH  Google Scholar 

  15. Brüls, O., Acary, V., Cardona, A.: Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-scheme. Comput. Methods Appl. Mech. Eng. 281(0), 131–161 (2014). https://doi.org/10.1016/j.cma.2014.07.025

    Article  MathSciNet  MATH  Google Scholar 

  16. Tijskens, B., Caerts, R., Decuyper, J.: Towards realistic prediction of soil-machine interaction. Cosimulation between lms virtual.lab motion and demeter. In: Proceedings of Multibody Dynamics 2011 Conference, Brussels, Belgium. Eccomas Thematic Conference (2011).

    Google Scholar 

  17. Fleissner, F., Lehnart, A., Eberhard, P.: Dynamic simulation of sloshing fluid and granular cargo in transport vehicles. Veh. Syst. Dyn. 48(1), 3 (2010). https://doi.org/10.1080/00423110903042717

    Article  Google Scholar 

  18. Kübler, R., Schiehlen, W.: Modular simulation in multibody system dynamics. Multibody Syst. Dyn. 4(2), 107–127 (2000). https://doi.org/10.1023/A:1009810318420

    Article  MATH  Google Scholar 

  19. Anitescu, M., Tasora, A.: An iterative approach for cone complementarity problems for nonsmooth dynamics. Comput. Optim. Appl. 47(2), 207–235 (2010). https://doi.org/10.1007/s10589-008-9223-4

    Article  MathSciNet  MATH  Google Scholar 

  20. Tasora, A., Negrut, D., Anitescu, M.: GPU-based parallel computing for the simulation of complex multibody systems with unilateral and bilateral constraints: an overview. In: Arczewski, K., Blajer, W., Fraczek, J., Wojtyra, M. (eds.) Multibody Dynamics: Computational Methods and Applications, pp. 283–307. Springer, Netherlands (2011)

    Chapter  Google Scholar 

  21. Tasora, A., Serban, R., Mazhar, H., Pazouki, A., Melanz, D., Fleischmann, J., Taylor, M., Sugiyama, H., Negrut, D., Chrono: an open source multi-physics dynamics engine. In: Kozubek, T., Blaheta, R., Šístek, J., Rozložník, M., Čermák, M. (eds.) High Performance Computing in Science and Engineering, pp. 19–49. Springer, Cham (2016)

    Chapter  Google Scholar 

  22. Serban, R., Olsen, N., Negrut, D., Recuero, A., Jayakumar, P.: A co-simulation framework for high-performance, high-fidelity simulation of ground vehicle-terrain interaction. Int. J. Veh. Perform. 5 (2018). https://doi.org/10.1504/IJVP.2019.10021232

  23. Wehage, R.A., Haug, E.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. J. Mech. Des. 104, 247–255 (1982). https://doi.org/10.1115/1.3256318

    Article  Google Scholar 

  24. Duriez, C., Dubois, F., Kheddar, A., Andriot, C.: Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Trans. Vis. Comput. Graph. 12(1), 36–47 (2006). https://doi.org/10.1109/TVCG.2006.13

    Article  Google Scholar 

  25. Dubois, F., Acary, V., Jean, M.: The contact dynamics method: a nonsmooth story. C. R., Méc. 346(3), 247–262 (2018). https://doi.org/10.1016/j.crme.2017.12.009. The legacy of Jean-Jacques Moreau in mechanics/L’héritage de Jean-Jacques Moreau en mécanique

    Article  Google Scholar 

  26. Samin, J., Fisette, P.: Symbolic Modeling of Multibody Systems. Springer, Berlin (2003)

    Book  Google Scholar 

  27. Docquier, N., Poncelet, A., Fisette, P.: Robotran: a powerful symbolic generator of multibody models. Mech. Sci. 4, 199–219 (2013). https://doi.org/10.5194/ms-4-199-2013

    Article  Google Scholar 

  28. Brogliato, B.: Inertial couplings between unilateral and bilateral holonomic constraints in frictionless lagrangian systems. Multibody Syst. Dyn. 29(3), 289–325 (2013). https://doi.org/10.1007/s11044-012-9317-8

    Article  MathSciNet  MATH  Google Scholar 

  29. Acary, V., Brémond, M., Huber, O.: On Solving Contact Problems with Coulomb Friction: Formulations and Numerical Comparisons, pp. 375–457. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75972-2_10

    Book  Google Scholar 

  30. Cundall, P.: Formulation of a three-dimensional distinct element model - Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 25(3), 107–116 (1988). https://doi.org/10.1016/0148-9062(88)92293-0

    Article  Google Scholar 

  31. Wriggers, P.: Computational Contact Mechanics. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/978-3-540-32609-0

    Book  MATH  Google Scholar 

  32. Dennu, R.: Ballast tamping unit for a railway track, of the type using forced vibration (1992)

Download references

Acknowledgements

The authors would like to thank Rémy Mozul for his help in the numerical implementation of the coupling method presented in this paper.

This work was supported by the Wallonia and by the Fonds de la Recherche Scientifique-FNRS of Belgium via a FRIA grant and a postdoctoral research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Docquier.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Docquier, N., Lantsoght, O., Dubois, F. et al. Modelling and simulation of coupled multibody systems and granular media using the non-smooth contact dynamics approach. Multibody Syst Dyn 49, 181–202 (2020). https://doi.org/10.1007/s11044-019-09721-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09721-0

Keywords

Navigation