Skip to main content
Log in

Hunting stability analysis of partially filled tank wagon on curved track using coupled CFD-MBD method

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this study, we develop an innovative numerical method for the investigation of the stability of a partially filled tank wagon moving on a curved track. The calculations are carried out in two subsystems including a dynamic system and fluid sloshing. We analyze the wagon dynamic system the multibody dynamic (MBD) model with 21 degrees of freedom (21-DOFs), which takes into account the lateral, vertical, roll, pitch, and yaw motions. The heuristic creep theory is used for the wheel–rail contact model. We adopt the fourth-order Runge–Kutta method for solving of this model. The transient fluid slosh is simulated by the computational fluid dynamic (CFD) model. The volume of fluid (VOF) technique is used for tracking the free surface of the fluid. This model is validated experimentally using the sloshing test setup. Then the simultaneous interaction between the dynamic system and the transient fluid slosh is analyzed by coupling the CFD model with the MBD model. By the parametric study on the filled-volume and wagon velocity, the critical hunting speed is derived by the Lyapunov indirect method. The results show that a higher filled volume decreases the critical hunting speed. Also, at the instability condition, an increasing trend for the phase trajectory of the wagon components is evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. D’Alessandro, V.: Modeling of tank vehicle dynamics by fluid sloshing coupled simulation. Italy (2012)

  2. Rakheja, S., Sankar, S., Ranganathan, R.: Influence of tank design factors on the rollover threshold of partially filled tank vehicles. SAE transactions, 536–547 (1989)

  3. Ranganathan, R., Rakheja, S., Sankar, S.: Kineto-static roll plane analysis of articulated tank vehicles with arbitrary tank geometry. Int. J. Veh. Des. 10(1), 89–111 (1989)

    Google Scholar 

  4. Kang, X., Rakheja, S., Stiharu, I.: Cargo load shift and its influence on tank vehicle dynamics under braking and turning. Int. J. Heavy Veh. Syst. 9(3), 173–203 (2002)

    Article  Google Scholar 

  5. Popov, G., Sankar, S., Sankar, T.: Optimal shape of a rectangular road container. J. Fluids Struct. 7(1), 75–86 (1993)

    Article  Google Scholar 

  6. Ziarani, M., Richard, M., Rakheja, S.: Optimisation of liquid tank geometry for enhancement of static roll stability of partially-filled tank vehicles. Int. J. Heavy Veh. Syst. 11(2), 155–173 (2004)

    Article  Google Scholar 

  7. Modaressi-Tehrani, K., Rakheja, S., Stiharu, I.: Three-dimensional analysis of transient slosh within a partly-filled tank equipped with baffles. Veh. Syst. Dyn. 45(6), 525–548 (2007)

    Article  Google Scholar 

  8. Yan, G., Siddiqui, K., Rakheja, S., Modaressi, K.: Transient fluid slosh and its effect on the rollover-threshold analysis of partially filled conical and circular tank trucks. Int. J. Heavy Veh. Syst. 12(4), 323–343 (2005)

    Article  Google Scholar 

  9. Abramson, H.N.: The dynamic behavior of liquids in moving containers, with applications to space vehicle technology (1966)

  10. Ibrahim, R.A.: Liquid Sloshing Dynamics: Theory and Applications. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  11. Slibar, A., Troger, H.: Dynamic steady state behavior of a tractor-semitrailer-system carrying liquid load. Veh. Syst. Dyn. 4(2–3), 110–114 (1975)

    Article  Google Scholar 

  12. Slibar, A., Troger, H.: The steady-state-behavior of a truck-trailer-system carrying rigid or liquid load. Veh. Syst. Dyn. 6(2–3), 167–169 (1977)

    Article  Google Scholar 

  13. Aquaro, M., Mucino, V.H., Gautam, M., Salem, M.: A finite element modeling approach for stability analysis of partially filled tanker trucks. SAE Technical Paper (1999)

  14. Salem, M., Mucino, V., Saunders, E., Gautam, M., Lozano-Guzman, A.: Lateral sloshing in partially filled elliptical tanker trucks using a trammel pendulum. Int. J. Heavy Veh. Syst. 16(1–2), 207–224 (2009)

    Article  Google Scholar 

  15. Godderidge, B., Turnock, S., Earl, C., Tan, M.: Identification of dangerous LNG sloshing using a rapid sloshing model validated with computational fluid dynamics (2008)

  16. Sayar, B., Baumgarten, J.: Pendulum analogy for nonlinear fluid oscillations in spherical containers. J. Appl. Mech. 48(4), 769–772 (1981)

    Article  Google Scholar 

  17. Yan, G., Rakheja, S.: Straight-line braking dynamic analysis of a partly filled baffled and unbaffled tank truck. Proc. Inst. Mech. Eng., Part D, J. Automob. Eng. 223(1), 11–26 (2009)

    Article  Google Scholar 

  18. Zhao, D., Hu, Z., Chen, G., Lim, S., Wang, S.: Nonlinear sloshing in rectangular tanks under forced excitation. Int. J. Nav. Archit. Ocean Eng. 10(5), 545–565 (2018)

    Article  Google Scholar 

  19. Sanapala, V., Rajkumar, M., Velusamy, K., Patnaik, B.: Numerical simulation of parametric liquid sloshing in a horizontally baffled rectangular container. J. Fluids Struct. 76, 229–250 (2018)

    Article  Google Scholar 

  20. Rumold, W.: Modeling and simulation of vehicles carrying liquid cargo. Multibody Syst. Dyn. 5(4), 351–374 (2001)

    Article  Google Scholar 

  21. Wasfy, T.M., O’Kins, J., Smith, S.: Experimental validation of a coupled fluid-multibody dynamics model for tanker trucks. SAE Int. J. Commer. Veh. 1, 71–88 (2008)

    Article  Google Scholar 

  22. Thomassy, F., Wendel, G., Green, S., Jank, A.: Coupled simulation of vehicle dynamics and tank slosh. Southwest Research Inst. San Antonio TX TARDEC Fuels and Lubricants Research Facility (2003)

  23. Azadi, S., Jafari, A., Samadian, M.: Effect of parameters on roll dynamic response of an articulated vehicle carrying liquids. J. Mech. Sci. Technol. 28(3), 837–848 (2014)

    Article  Google Scholar 

  24. Cheli, F., D’Alessandro, V., Premoli, A., Sabbioni, E.: Simulation of sloshing in tank trucks. Int. J. Heavy Veh. Syst. 20(1), 1–18 (2013)

    Article  Google Scholar 

  25. Vera, C., Paulin, J., Suarez, B., Gutiérrez, M.: Simulation of freight trains equipped with partially filled tank containers and related resonance phenomenon. Proc. Inst. Mech. Eng., F J. Rail Rapid Transit 219(4), 245–259 (2005)

    Article  Google Scholar 

  26. Younesian, D., Abedi, M., Hazrati Ashtiani, I.: Dynamic analysis of a partially filled tanker train travelling on a curved track. Int. J. Heavy Veh. Syst. 17(3–4), 331–358 (2010)

    Article  Google Scholar 

  27. Feizi, M.M., Reza Sajadi, S.M., Shahravi, M.: Longitudinal behaviour of fluid in a partially filled tanker. Int. J. Heavy Veh. Syst. 21(1), 11–25 (2014)

    Article  Google Scholar 

  28. Nokhbatolfoghahai, A., Noorian, M., Haddadpour, H.J.M.: Dynamic response of tank trains to random track irregularities. Meccanica 53(10), 2687–2703 (2018)

    Article  MathSciNet  Google Scholar 

  29. Dai, J., Han, M., Ang, K.K.: Moving element analysis of partially filled freight trains subject to abrupt braking. Int. J. Mech. Sci. 151, 85–94 (2019)

    Article  Google Scholar 

  30. Ashtiani, I.H., Rakheja, S., Ahmed, W.: Investigation of coupled dynamics of a railway tank car and liquid cargo subject to a switch-passing maneuver. Proc. Inst. Mech. Eng., F J. Rail Rapid Transit (2019). https://doi.org/10.1177/0954409718823650

    Article  Google Scholar 

  31. Rahmati-Alaei, A., Sharavi, M., Samadian Zakaria, M.: Development of a coupled numerical model for the interaction between transient fluid slosh and tank wagon vibration. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. (2018). https://doi.org/10.1177/1464419318809616

    Article  Google Scholar 

  32. Cheng, Y.-C., Lee, S.-Y., Chen, H.-H.: Modeling and nonlinear hunting stability analysis of high-speed railway vehicle moving on curved tracks. J. Sound Vib. 324(1–2), 139–160 (2009)

    Article  Google Scholar 

  33. Kim, P., Jung, J., Seok, J.: A parametric dynamic study on hunting stability of full dual-bogie railway vehicle. Int. J. Precis. Eng. Manuf. 12(3), 505–519 (2011)

    Article  Google Scholar 

  34. Garg, V.: Dynamics of Railway Vehicle Systems. Elsevier, Amsterdam (2012)

    Google Scholar 

  35. Vidyasagar, M.: Nonlinear Systems Analysis. Prentice Hall, Upper Saddle River (1978)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Sharavi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Nomenclature

Appendix: Nomenclature

\(I_{cx}\) :

\(X\)-axis inertia moments for car body

\(I_{cy}\) :

\(Y\)-axis inertia moments for car body

\(I_{cz}\) :

\(Z\)-axis inertia moments for car body

\(L_{t}\) :

Length of cylindrical tank

\(m_{c}\) :

Mass of car body

\(R_{t}\) :

Radius of cylindrical tank

\(I_{bx}\) :

\(X\)-axis inertia moments for bogie

\(I_{bz}\) :

\(Z\)-axis inertia moments for bogie

\(m_{b}\) :

Mass of bogie

\(a\) :

Half of track gauge

\(f_{11}\) :

Lateral creep coefficient

\(f_{12}\) :

Lateral/spin creep coefficient

\(f_{22}\) :

Spin creep coefficient

\(f_{33}\) :

Longitudinal creep coefficient

\(I_{wx}\) :

\(X\)-axis inertia moment for wheel-set

\(I_{wz}\) :

\(Z\)-axis inertia moment for wheel-set

\(m_{w}\) :

Mass of wheel-set

\(r_{0}\) :

Wheel radius

\(R\) :

Radius of curved track

\(w_{ext}\) :

External load (weight of the elements of mechanical and electrical system)

\(\lambda\) :

Wheel conicity

\(\phi_{se}\) :

Superelevation angle of curved track

\(b_{1}\) :

Half distance of primary longitudinal suspension

\(b_{2}\) :

Half distance of secondary longitudinal suspension

\(c_{px}\) :

Longitudinal primary suspension damp

\(c_{py}\) :

Lateral primary suspension damping

\(c_{pz}\) :

Vertical primary suspension damping

\(c_{sx}\) :

Longitudinal secondary suspension damping

\(c_{sy}\) :

Lateral secondary suspension damping

\(c_{sz}\) :

Vertical secondary suspension damping

\(h_{c}\) :

Vertical distance from wheel-set center of gravity to car body

\(h_{t}\) :

Vertical distance from wheel-set center of gravity to secondary suspension

\(k_{px}\) :

Longitudinal primary suspension stiffness

\(k_{py}\) :

Lateral primary suspension stiffness

\(k_{pz}\) :

Vertical primary suspension stiffness

\(k_{sx}\) :

Longitudinal secondary suspension stiffness

\(k_{sy}\) :

Lateral secondary suspension stiffness

\(k_{sz}\) :

Vertical secondary suspension stiffness

\(l_{1}\) :

Half distance of primary lateral suspension

\(l_{c}\) :

Longitudinal distance from wheel-set center of gravity to car body

\(A\) :

Stability matrix

\(A_{r}\) :

Rotation matrix for coordinate system

\(g\) :

Gravity acceleration

\(V\) :

Fluid flow velocity

\(v\) :

Wagon velocity

\(v^{*}\) :

Hunting speed

\(x_{0}\) :

Equilibrium point

\(x(t)\) :

Vector of state variables

\(X\_Acc\) :

Accelerometer data (longitudinal)

\(y_{b}\) :

Lateral coordinate of bogies

\(y_{c}\) :

Lateral coordinate of car body

\(y_{w}\) :

Lateral coordinate of wheel-sets

\(Y\_Acc\) :

Accelerometer data (lateral)

\(z_{b}\) :

Vertical coordinate of bogies (front and rear)

\(z_{c}\) :

Vertical coordinate of car body

\(Z\_Acc\) :

Accelerometer data (vertical)

\(\theta_{c}\) :

\(Y\)-axis rotational coordinate (pitch angle) of car body

\(\phi_{b}\) :

\(X\)-axis rotational coordinate (roll angle) of bogies

\(\phi_{c}\) :

\(X\)-axis rotational coordinate (roll angle) of car body

\(\psi_{c}\) :

\(Z\)-axis rotational coordinate (yaw angle) of car body

\(\psi_{b}\) :

\(Z\)-axis rotational coordinate (yaw angle) of bogies

\(\psi_{w}\) :

\(Z\)-axis rotational coordinate (yaw angle) of wheel-sets

\(.^{(\text{Dot})}\) :

First-order derivative

\({..}^{(\text{Double dot})}\) :

Second-order derivative

\(A_{i}\) :

Area vector of the \(i\)th wall cell

\(CG_{y}\) :

Fluid’s center of gravity coordinate (lateral)

\(CG_{z}\) :

Fluid’s center of gravity coordinate (vertical)

\(f\) :

Volume fraction of the liquid phase for a cell

\(f_{1}\) :

Volume fraction for air

\(F(t)\) :

Fluid slosh force

\(F_{f}\) :

External force for CFD model

\(F_{i}\) :

Force vector of ith wall cell

\(F_{fy}\) :

Lateral sloshing force

\(F_{fz}\) :

Vertical sloshing force

\(I_{fx}\) :

\(X\)-axis inertia moment for fluid

\(I_{fy}\) :

\(Y\)-axis inertia moment for fluid

\(I_{fz}\) :

\(Z\)-axis inertia moment for fluid

\(M(t)\) :

Fluid slosh moment

\(m_{f}\) :

Mass of fluid in car body

\(M_{fx}\) :

Fluid slosh moment about \(X\) axis

\(M_{fy}\) :

Fluid slosh moment about \(Y\) axis

\(M_{fz}\) :

Fluid slosh moment about \(Z\) axis

\(p\) :

Pressure

\(P_{i}\) :

Pressure of the ith wall cell

\(Q\) :

Wetted face on tank wall

\(Q_{m}\) :

Mesh quality

\(r\) :

Position vector of a fluid particle

\(\bar{r}_{i}\) :

Position vector of wall cell from tank coordinate

\(t\) :

Time

\(t_{i}\) :

Initial time

\(t_{i + 1}\) :

Time in the next step

\(U\) :

Translational velocity vector

\(\nabla\) :

Gradient operator

\(\Delta t\) :

Time step

\(\rho\) :

Mass density of fluid

\(\rho_{1}\) :

Density of air

\(\rho_{2}\) :

Density of water

\(\mu\) :

Viscosity

\(\mu_{1}\) :

Dynamic viscosity for air

\(\mu_{2}\) :

Dynamic viscosity for water

\(\varOmega\) :

Angular velocity vector

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmati-Alaei, A., Sharavi, M. & Samadian Zakaria, M. Hunting stability analysis of partially filled tank wagon on curved track using coupled CFD-MBD method. Multibody Syst Dyn 50, 45–69 (2020). https://doi.org/10.1007/s11044-019-09715-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09715-y

Keywords

Navigation