Skip to main content
Log in

Railway multibody simulation with the knife-edge-equivalent wheel–rail constraint equations

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper describes a new numerical procedure for the modelling and simulation of the wheel–rail contact in railway dynamic simulations. The method is called knife-edge-equivalent contact constraint method, or simply KEC-method. Using this method, the wheel–rail contact is modelled as rigid or constraint-based using a set of kinematic constraints that eliminates one-degree of freedom of relative wheel–rail motion. The KEC-method uses a transformed but equivalent wheel profile in contact with a single-point rail. This equivalent profile has the property of producing the same wheelset-rail relative kinematics as the real wheel–rail profiles. The method can be used efficiently online while achieving better computational times than using contact lookup tables. Compared with existing constraint methods, the KEC-method has the following advantages: (1) simplification of the wheel–rail contact constraints, (2) simplified wheel–rail profiles, (3) online solution of the contact constraints, (4) reduction of the number of surface parameters, and (5) increased computational efficiency. A comparative study with respect to the use of efficient contact lookup tables in the simulation of Metro de Sevilla (metropolitan train in the city of Sevilla) shows that this contact method is appropriate to simulate the dynamics of a railway vehicle efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Shabana, A.A., Zaazaa, K.E., Sugiyama, H.: Railroad Vehicle Dynamics: A Computational Approach. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  2. Shabana, A.A., Tobaa, M., Sugiyama, H., Zaazaa, K.E.: On the computer formulations of the wheel/rail contact problem. Nonlinear Dyn. 40(2), 169–193 (2005). https://doi.org/10.1007/s11071-005-5200-y

    Article  MATH  Google Scholar 

  3. Shabana, A.A., Sany, J.R.: An augmented formulation for mechanical systems with non-generalized coordinates: application to rigid body contact problems. Nonlinear Dyn. 24(2), 183–204 (2001). https://doi.org/10.1023/A:1008362309558

    Article  MATH  Google Scholar 

  4. Shabana, A.A., Zaazaa, K.E., Escalona, J.L., Sany, J.R.: Development of elastic force model for wheel/rail contact problems. J. Sound Vib. 269(1–2), 295–325 (2004). https://doi.org/10.1016/S0022-460X(03)00074-9

    Article  Google Scholar 

  5. Escalona, J.L., Aceituno, J.F.: Multibody simulation of railway vehicles with contact lookup tables. Int. J. Mech. Sci. (2019). https://doi.org/10.1016/j.ijmecsci.2018.01.020

    Article  Google Scholar 

  6. Pombo, J.C., Ambrósio, J.A.: Application of a wheel–rail contact model to railway dynamics in small radius curved tracks. Multibody Syst. Dyn. 19(1–2), 91–114 (2008). https://doi.org/10.1007/s11044-007-9094-y

    Article  MATH  Google Scholar 

  7. Malvezzi, M., Meli, E., Falomi, S., Rindi, A.: Determination of wheel–rail contact points with semianalytic methods. Multibody Syst. Dyn. 20(4), 327–358 (2008). https://doi.org/10.1007/s11044-008-9123-5

    Article  MATH  Google Scholar 

  8. Recuero, A.M., Aceituno, J.F., Escalona, J.L., Shabana, A.A.: A nonlinear approach for modeling rail flexibility using the absolute nodal coordinate formulation. Nonlinear Dyn. 83(1–2), 463–481 (2016). https://doi.org/10.1007/s11071-015-2341-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Baeza, L., Thompson, D.J., Squicciarini, G., Denia, F.D.: Method for obtaining the wheel–rail contact location and its application to the normal problem calculation through ‘contact’. Veh. Syst. Dyn. (2018). https://doi.org/10.1080/00423114.2018.1439178

    Article  Google Scholar 

  10. Sugiyama, H., Araki, K., Suda, Y.: On-line and off-line wheel/rail contact algorithm in the analysis of multibody railroad vehicle systems. J. Mech. Sci. Technol. 23(4), 991–996 (2009). https://doi.org/10.1007/s12206-009-0327-2

    Article  Google Scholar 

  11. Santamaría, J., Vadillo, E., Gómez, J.: A comprehensive method for the elastic calculation of the two-point wheel–rail contact. Veh. Syst. Dyn. 44(suppl. 1), 240–250 (2006). https://doi.org/10.1080/00423110600870337

    Article  Google Scholar 

  12. Schupp, G.: Bifurcation analysis of railway vehicles. Multibody Syst. Dyn. 15, 25–50 (2006). https://doi.org/10.1007/s11044-006-2360-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Shabana, A.A., Tobaa, M., Marquis, B., El-Sibaie, M.: Effect of the linearization of the kinematic equations in railroad vehicle system dynamics. J. Comput. Nonlinear Dyn. 1(1), 25–34 (2005). https://doi.org/10.1115/1.1951783

    Article  Google Scholar 

  14. Zhai, W., Sun, X.: A detailed model for investigating vertical interaction between railway vehicle and track. Veh. Syst. Dyn. 23(S1), 603–615 (1994). https://doi.org/10.1080/00423119308969544

    Article  Google Scholar 

  15. Fisette, P., Samin, J.-C.: Lateral dynamics of a light railway vehicle with independent wheels. Veh. Syst. Dyn. 20(supl. 1), 157–171 (1992). https://doi.org/10.1080/00423119208969395

    Article  Google Scholar 

  16. Montenegro, P., Neves, S., Calçada, R., Tanabe, M., Sogabe, M.: Wheel–rail contact formulation for analyzing the lateral train–structure dynamic interaction. Comput. Struct. 152, 200–214 (2015). https://doi.org/10.1016/j.compstruc.2015.01.004

    Article  Google Scholar 

  17. Muñoz, S., Aceituno, J.F., Urda, P., Escalona, J.L.: Multibody model of railway vehicles with weakly coupled vertical and lateral dynamics. Mech. Syst. Signal Process. 115, 570–592 (2019). https://doi.org/10.1016/j.ymssp.2018.06.019

    Article  Google Scholar 

  18. Arnold, M., Netter, H.: Wear profiles and the dynamical simulation of wheel-rail systems. In: Progress in Industrial Mathematics at ECMI, vol. 96, pp. 77–84. Springer, Berlin (1997). https://doi.org/10.1007/978-3-322-96688-9_8

    Chapter  Google Scholar 

  19. Schupp, G., Weidemann, C., Mauer, L.: Modelling the contact between wheel and rail within multibody system simulation. Veh. Syst. Dyn. 41(5), 349–364 (2004). https://doi.org/10.1080/00423110412331300326

    Article  Google Scholar 

  20. Netter, H., Schupp, G., Rulka, W., Schroeder, K.: New aspects of contact modelling and validation within multibody system simulation of railway vehicles. Veh. Syst. Dyn. 29(S1), 246–269 (1998). https://doi.org/10.1080/00423119808969563

    Article  Google Scholar 

  21. Aceituno, J.F., Chamorro, R., García-Vallejo, D., Escalona, J.L.: On the design of a scaled railroad vehicle for the validation of computational models. Mech. Mach. Theory 115, 60–76 (2017). https://doi.org/10.1016/j.mechmachtheory.2017.04.015

    Article  Google Scholar 

  22. Marino, F., Distante, A., Mazzeo, P.L., Stella, E.: A real-time visual inspection system for railway maintenance: automatic hexagonal-headed bolts detection. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 37(3), 418–428 (2007). https://doi.org/10.1109/TSMCC.2007.893278

    Article  Google Scholar 

  23. Perrin, G., Soize, C., Duhamel, D., Funfschilling, C.: Track irregularities stochastic modeling. Probab. Eng. Mech. 34, 123–130 (2013). https://doi.org/10.1016/j.probengmech.2013.08.006

    Article  Google Scholar 

  24. Wickens, A.: Fundamentals of Rail Vehicle Dynamics. Guidance and Stability. CRC Press, Boca Raton (2005)

    Google Scholar 

  25. Esveld, C.: Modern Railway Track. MRT-Productions, Zaltbommel (2001)

    Google Scholar 

  26. Polach, O.: Creep forces in simulations of traction vehicles running on adhesion limits. Wear 258, 992–1000 (2005). https://doi.org/10.1016/j.wear.2004.03.046

    Article  Google Scholar 

  27. Claus, H., Schiehlen, W.: Modeling and simulation of railway bogie structural vibrations. Veh. Syst. Dyn. 29(S1), 538–552 (1998). https://doi.org/10.1080/00423119808969585

    Article  Google Scholar 

Download references

Acknowledgements

The first and third authors thank the Spanish Ministry of Science, Innovation and Universities under project reference TRA2017-86355-C2-1-R. The second author thanks for the support given by the Spanish Ministry of Science, Innovation and Universities under the Mobility Program ‘José Castillejo’ with reference CAS18/00072. All this support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Escalona.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest to this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escalona, J.L., Aceituno, J.F., Urda, P. et al. Railway multibody simulation with the knife-edge-equivalent wheel–rail constraint equations. Multibody Syst Dyn 48, 373–402 (2020). https://doi.org/10.1007/s11044-019-09708-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-019-09708-x

Keywords

Navigation